Materials

Switchable Material Absorbs and Stores Sun's Energy

A team at MIT and Harvard University has created a material that absorbs the sun’s heat and stores that energy in chemical form, ready to be released again on demand.The technology provides an opportunity for the expansion of solar power into new realms, specifically applications where heat is the desired output.“It could change the game, since it makes the sun’s energy, in the form of heat, storable and distributable,” says Jeffrey Grossman, the Carl Richard Soderberg Associate Professor of Power Engineering at MIT.SourceAlso: See other Materials tech briefs.

Posted in: Materials, News

Read More >>

Researchers Use Sun to Produce Solar-Energy Materials

In a recent advance in solar energy, researchers have discovered a way to tap the sun not only as a source of power, but also to directly produce solar energy materials.This breakthrough by chemical engineers at Oregon State University could soon reduce the cost of solar energy, speed production processes, use environmentally benign materials, and make the sun a “one-stop shop” that produces both the materials for solar devices and the energy to power them.The work is based on the use of a “continuous flow” microreactor to produce nanoparticle inks that make solar cells by printing. In this process, simulated sunlight is focused on the solar microreactor to rapidly heat it, while allowing precise control of temperature to aid the quality of the finished product. The light in these experiments was produced artificially, but the process could be done with direct sunlight, and at a fraction of the cost of current approaches.SourceAlso: Read other Materials tech briefs.

Posted in: Manufacturing & Prototyping, Materials, Solar Power, Renewable Energy, Energy, Nanotechnology, News

Read More >>

Transient Electronics Dissolve When Triggered

An Iowa State research team led by Reza Montazami is developing "transient materials" and "transient electronics" that can quickly and completely melt away when a trigger is activated. The development could mean that one day you might be able to send out a signal to destroy a lost credit card.To demonstrate that potential, Montazami played a video showing a blue light-emitting diode mounted on a clear polymer composite base with the electrical leads embedded inside. After a drop of water, the base and wiring began to melt away. As the technology develops, Montazami sees more and more potential for the commercial application of transient materials. A medical device, once its job is done, could harmlessly melt away inside a person’s body. A military device could collect and send its data and then disappear, leaving no trace of an intelligence mission. An environmental sensor could collect climate information, then wash away in the rain. SourceAlso: Read other Electronics & Computers tech briefs.

Posted in: Electronics & Computers, Electronic Components, Electronics, Environmental Monitoring, Green Design & Manufacturing, Materials, Composites, Plastics, Medical, Lighting, LEDs, Semiconductors & ICs, Defense, News

Read More >>

Can Cobalt-Graphene Beat Out Platinum As Catalyst in Hydrogen Fuel Cells?

Platinum works well as a catalyst in hydrogen fuel cells, but it is expensive and degrades over time. Brown University chemist Shouheng Sun and his students have developed a new material — a graphene sheet covered by cobalt and cobalt-oxide nanoparticles — that can catalyze the oxygen reduction reaction nearly as well as platinum does and is substantially more durable.

Posted in: Alternative Fuels, Materials, Energy, News

Read More >>

'Nanoflowers' for Energy Storage and Solar Cells

North Carolina State University researchers have created flower-like structures out of germanium sulfide (GeS) – a semiconductor material – that have extremely thin petals with an enormous surface area. The GeS flowers hold promise for next-generation energy storage devices and solar cells.

Posted in: Batteries, Materials, Energy Storage, Solar Power, Renewable Energy, Nanotechnology, News

Read More >>

Solar Nanowire Template Permits Flexible Energy Absorption

Researchers creating electricity through photovoltaics want to convert as many of the sun’s wavelengths as possible to achieve maximum efficiency. For this reason, they see indium gallium nitride as a valuable future material for photovoltaic systems. Changing the concentration of indium allows researchers to tune the material’s response so it collects solar energy from a variety of wavelengths.

Posted in: Materials, Solar Power, Energy Efficiency, Renewable Energy, Nanotechnology, News

Read More >>

Detecting Contaminants in Water

Many organic contaminants in the air and in drinking water need to be detected at very low-level concentrations. Research published by the laboratory of Prashant V. Kamat, the John A. Zahm Professor of Science at the University of Notre Dame, could be beneficial in detecting those contaminants.

Posted in: Environmental Monitoring, Metals, Sensors, Detectors, Semiconductors & ICs, News

Read More >>