Materials & Coatings

Researcher Spotlight: Atom­Thick Material Offers 2D Imaging Possibilities

Rice University scientists have developed a two-­dimensional, atom­-thick, light-­sensitive material called CIS, a single­-layer matrix of copper, indium, and selenium atoms. Sidong Lei, a graduate student, also built a prototype — a three-­pixel charge­-coupled device (CCD) sensor — to prove the material’s ability to capture an image. The optoelectronic memory material may be the basis for future flat imaging devices and two­-dimensional electronics.

Posted in: Articles, Sensors

Read More >>

Customizing Visual 3D Optical Coatings

There are many ways to coat an optic and optimize the coating for a specific application, some more interesting than others. But any thin film coating process requires raw materials, coating capabilities, deposition chamber(s), coating software, a spectrophotometer, and an efficient production system that can produce the desired coating or effect while keeping within the customer’s requisite specifications. This article will focus on the challenge of customizing a non-polarizing cube beamsplitter for a 3D visual application and detail the steps taken to make this challenge a reality.

Posted in: Articles, Features, Coatings & Adhesives, Optics, Photonics

Read More >>

Products of Tomorrow: January 2015

The technologies NASA develops don’t just blast off into space. They also improve our lives here on Earth. Life-saving search-and-rescue tools, implantable medical devices, advances in commercial aircraft safety, increased accuracy in weather forecasting, and the miniature cameras in our cellphones are just some of the examples of NASA-developed technology used in products today.

Posted in: Articles, Products, Techs for License, Sensors

Read More >>

Heat-Conducting Plastic Blend Developed

The spaghetti-like internal structure of most plastics makes it hard for them to cast away heat, but a University of Michigan (U-M) research team has made a plastic blend that does so 10 times better than its conventional counterparts. Because plastics restrict the flow of heat, their use is limited in technologies like computers, smartphones, cars, or airplanes — places that could benefit from their properties, but where heat dissipation is important.

Posted in: Articles, UpFront, Plastics

Read More >>

Low-Weight, Durable, Low-Cost Metal Rubber Sensor System for Ultra-Long-Duration Scientific Balloons

Sensors integrated onto load-bearing seams measure axial loads in the most extreme environmental conditions. Goddard Space Flight Center, Greenbelt, Maryland Large axial load forces and extreme temperature ranges are typical for scientific balloon missions. Therefore, a durable, flexible, and thermally stable sensor material is needed. In this innovation, sensors have been designed to be integrated onto the load-bearing seams and/or outer balloon mesh polyethylene surface of the pressurized balloon system to measure accurately and continually axial loads under extreme environmental conditions for extended intervals (i.e. more than 100 days).

Posted in: Articles, Briefs, TSP, Coatings & Adhesives, Metals, Sensors

Read More >>

High-Performance Polyimide Powder Coatings

Applications include bridges, pipes, machinery, exposed metal parts and structures, and automobile components. John F. Kennedy Space Center, Florida Powder coatings are used throughout industry to paint a myriad of metallic objects. This method of coating has gained popularity because of its conservation of materials and elimination of volatile organic compounds (VOCs). Resins used in powder coatings are traditionally chosen from those that have low melting points (polyesters, acrylics, urethanes, epoxies, etc.). These resins are used because they can melt and flow into a smooth coating before curing to a durable surface. High-performance resins such as Teflon, nylon, and polyimide have not found use in powder coatings because of their high melting points.

Posted in: Articles, Briefs, Coatings & Adhesives

Read More >>

Selective Functionalization of Carbon Nanotubes

Lyndon B. Johnson Space Center, Houston, Texas This invention is a process by which carbon nanotubes can be chemically functionalized according to their precise electronic structure. The process involves an exploitation of charge transfer stability at the nanotube sidewall to direct selective reaction of certain electronic structures over others. This process forms the basis for manipulating and separating carbon nanotubes by their electronic structure by chemical means.

Posted in: Articles, Briefs

Read More >>