Materials

Refractory Metal Fasteners for Extreme Conditions: The Basics

There is a wide range of metal fasteners commonly available for standard applications, but what if your application is at very high temperature or in a highly corrosive environment? Sometimes the more commonly available fasteners are just not up to the job. Enter high-performance refractory metal fasteners. Refractory metal fasteners – nuts, bolts (also called screws or machine screws) and washers – are ideal for situations that involve high temperature, high voltage, magnetism and harsh corrosive environments.

Posted in: Materials, White Papers

Read More >>

Reliability Testing of GORE® Protective Vents in Telecommunication Enclosures

Premature failure of telecommunication equipment leads to network downtime, higher costs, increased maintenance and decreased brand loyalty. One of the most significant challenges for this equipment is withstanding the conditions of the environment in which it is installed.  

Posted in: Materials, White Papers

Read More >>

PICA-on-Edge

This material fills gaps between adjacent PICA blocks. Langley Research Center, Hampton, Virginia The current baseline ablator material for the Advanced Development Program (ADP) for the thermal protection system (TPS) of the Orion heat shield is phenolic impregnated carbon ablator (PICA). PICA is a low-density, low-strength material that must be isolated from mechanically and thermally induced deformations and strains of the underlying heat shield carrier structure. The current invention is being developed to provide a means of eliminating gaps between adjacent PICA blocks by filling the gaps with a compatible, relatively soft material that alleviates thermal and mechanical stresses that would occur in rigidly bonded PICA blocks. An ideal gap material should have comparable thermal and ablative performance to PICA, and have low enough porosity to prevent hot gas flow in the gap. It must be compliant enough that adjacent PICA blocks can move somewhat independently of each other and the underlying carrier structure to reduce thermal and mechanical stresses to acceptable levels.

Posted in: Materials, Briefs, TSP

Read More >>

Layered Composite Thermal Insulation System for Non-Vacuum Applications

The new blanket-type system is suitable for extreme outdoor environments. John F. Kennedy Space Center, Florida Ambient air insulation systems for low-temperature (sub-ambient) applications are difficult to achieve because of moisture ingress and environmental degradation, as well as thermal stress-cracking. Most currently accepted methods for externally applied outdoor environments are fraught with problems centered around moisture and sealing.

Posted in: Materials, Briefs

Read More >>

White, Electrically Dissipative Thermal Control Coating

Goddard Space Flight Center, Greenbelt, Maryland A highly reflective, white conductive coating system was developed using various layered coatings to maximize the structural, electrical, and optical reflectance properties for spacecraft radiators. The top layer of the system contains a highly reflective white pigment within a dissipative inorganic binder. This layer is above a highly conductive second layer containing a white conductive pigment within the same binder system.

Posted in: Materials, Briefs, TSP

Read More >>

Ultra-High-Temperature Ceramic Composites with SiC Reinforcements

Potential applications are at temperatures approaching 4,000 °F (≈2,200 °C). Ames Research Center, Moffett Field, California Future-generation materials for use on space transportation vehicles require substantial improvements in material properties, leading to increased reliability and safety, as well as intelligent design to allow for current materials to meet future needs. Ultra-high-temperature ceramics (UHTCs) composed primarily of metal diborides are candidate materials for sharp leading edges on hypersonic re-entry vehicles. The mechanical performance of ceramics in general would benefit from a high-aspect reinforcement phase.

Posted in: Materials, Briefs

Read More >>

Cathode Discharge Catalytic Systems for Hydrogen Recovery from Methane

Methane previously vented into space is now used for hydrogen recovery. Marshall Space Flight Center, Alabama In the process of recovery and regeneration of cabin atmosphere to supply oxygen to facilitate extended-duration manned missions, including expeditions to Mars or a return to the Moon, one of the byproducts of this reaction is waste methane, which is vented into space. This innovation reclaims hydrogen from the methane using a low-power, non-thermal plasma discharge process based on distributed hollow-cathode and filamentary discharges. This hollow-cathode, non-thermal plasma (HCNTP) is characterized by electrons and heavy particles being in thermodynamic non-equilibrium with electrons heated to 10,000 K and above, while ions and neutral species remain at near ambient temperature. By using pulsed voltage waveforms for generating the plasma discharge, a majority of electric energy goes into heating electrons.

Posted in: Materials, Briefs

Read More >>

White Papers

Tubing & Hose Buying Tips
Sponsored by Newage Industries
Working With Mechanical Motion Subsystems
Sponsored by Bell Everman
SunWize Power Systems – Guidelines for Choosing the Right Product
Sponsored by SunWize
Designing Ring Projections for Hermetic Sealing
Sponsored by Miyachi Unitek
Fiber Optic Rotary Joints Add a Spin to Sensing, Mobile, and Robotic Fiber Systems
Sponsored by Princetel
Antenna Basics
Sponsored by Rohde and Schwarz

White Papers Sponsored By: