Materials

Transient Electronics Dissolve When Triggered

An Iowa State research team led by Reza Montazami is developing "transient materials" and "transient electronics" that can quickly and completely melt away when a trigger is activated. The development could mean that one day you might be able to send out a signal to destroy a lost credit card.To demonstrate that potential, Montazami played a video showing a blue light-emitting diode mounted on a clear polymer composite base with the electrical leads embedded inside. After a drop of water, the base and wiring began to melt away. As the technology develops, Montazami sees more and more potential for the commercial application of transient materials. A medical device, once its job is done, could harmlessly melt away inside a person’s body. A military device could collect and send its data and then disappear, leaving no trace of an intelligence mission. An environmental sensor could collect climate information, then wash away in the rain. SourceAlso: Read other Electronics & Computers tech briefs.

Posted in: Electronics & Computers, Electronic Components, Electronics, Environmental Monitoring, Green Design & Manufacturing, Materials, Composites, Plastics, Medical, Lighting, LEDs, Semiconductors & ICs, Defense, News

Read More >>

Dispersion of Carbon Nanotubes Into Polymer Matrices to Produce Unique Properties

The present invention addresses the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400 to 800 nm), electrical conductivity, and high thermal stability.

Posted in: Materials, Briefs, TSP

Read More >>

Carbon Nanotube Growth Density Control

This method uses electricity and temperature to control growth density. Ames Research Center, Moffett Field, California This method provides control over the growth density of carbon nanotubes (CNTs) on a relatively coarse scale, with density adjustment over several orders of magnitude, using an applied electrical field or voltage difference that is aligned substantially perpendicular to the substrate surface, which is adjacent to the surface during growth. Control or influence of CNT growth density on a finer scale, estimated at a factor of 2 to 10, is provided using temperature control for the CNT growth process.

Posted in: Materials, Briefs, TSP

Read More >>

Pulsed Plasma Lubricator (PPL) Technology for the In Situ Replenishment of Dry Lubricants in Extreme Environments

Applications include mechanisms that are not easily serviced in the field, including those used in deep sea or arctic oil drilling. NASA missions employing mobility systems and other moving mechanical assemblies for application on Mars, the Moon, and in deep space depend on the reliable operation of these assemblies and their tribological components. Wet lubricants are sometimes used in space applications, but in order to avoid solidification, they often require active heating due to the extreme cold temperatures that are encountered. Dry lubricants, such as molybdenum disulfide (MoS2), are more commonly chosen for space mechanisms because they are not subject to the low-temperature limitations of wet lubricants while also providing superior lubricating properties. A major drawback of dry lubricants is low wear resistance that eventually leads to failure of the assembly as the lubricant is removed.

Posted in: Materials, Briefs, TSP

Read More >>

Long-Life, Hydrophilic, Antimicrobial Coating for Condensing Heat Exchangers

New coating uses a modified structure intended to inhibit diffusion, slow hydrolysis, and lengthen the coating life. Future manned spacecraft and lunar or Mars outposts will need a condensing heat exchanger (CHX) to control humidity in the cabin atmosphere. Condensing surfaces must be hydrophilic to control condensate flow and ensure efficient operation in zero gravity, and biocidal to prevent growth of microbes and formation of biofilms on condensing surfaces. Coatings must be extremely stable, adhere to the condensing surface, and maintain hydro philic and biocidal properties for many years.

Posted in: Materials, Briefs

Read More >>

Opposed Pad Gecko Adhesive Gripper for On-Off Omnidirectional Anchoring/Gripping in Orbit

Applications include satellite servicing and inspection of inflatable habitats. The idea of turning the stickiness of a material on and off is not an intuitive concept, yet this is exactly how geckos run up walls at speeds greater than 1 m/s and cling to ceilings made of glass. Transitioning this capability to spacecraft would constitute a major breakthrough because it would provide improved capabilities for multiple mission types.

Posted in: Materials, Briefs, TSP

Read More >>

Complex Geometry Multi-Use Coatings for Abrasion Prevention, Wear Resistance, and Lunar Dust Removal

Two coatings are required to remove/repel lunar dust particles from the mechanism or surface that needs protection. One coating must be a conductor, and one must be a dielectric. Tungsten carbide (WC) and aluminum oxide (Al2O3) were found to be best suited as the conductor and dielectric, respectively.

Posted in: Materials, Briefs, TSP

Read More >>