Materials & Coatings

Detecting Airborne Mercury by Use of Palladium Chloride

These sensors can be regenerated under relatively mild conditions. Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment.

Posted in: Briefs, TSP

Read More >>

Silicon Nanowire Growth at Chosen Positions and Orientations

There are numerous potential applications in highly miniaturized sensors and electronic devices. It is now possible to grow silicon nanowires at chosen positions and orientations by a method that involves a combination of standard microfabrication processes. Because their positions and orientations can be chosen with unprecedented precision, the nanowires can be utilized as integral parts of individually electronically addressable devices in dense arrays.

Posted in: Briefs, TSP

Read More >>

Ultra-Lightweight Self- Deployable Nanocomposite Structure for Habitat Applications

A document discusses self-deployable, rigidized structures that are ultra-lightweight and have gas barrier properties, space durability, and high impact resistance. Developed here are microcellular-foamed sandwich structures made from nanocomposite shape memory polymers (SMPs) with Cold-Hibernated Elastic Memory (CHEM) deployed technique for space structural components including space habitats. This type of foam sandwich also does not suffer from the toxicity problems of conventional foams, and has higher mechanical properties than those processed with conventional techniques. This design can be compacted into a very small volume for launch. Once deployed, the microcellular structure can use the heat from the Sun to recover 98 to 100 percent of its shape.

Posted in: Briefs, TSP

Read More >>

Room-Temperature Ionic Liquids for Electrochemical Capacitors

A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

Posted in: Briefs, TSP

Read More >>

Yb14MnSb11 as a High- Efficiency Thermoelectric Material

This material could supplant the state-of-theart material, SiGe. Yb14MnSb11 has been found to be well-suited for use as a p-type thermoelectric material in applications that involve hot-side temperatures in the approximate range of 1,200 to 1,300 K. The figure of merit that characterizes the thermal-to-electric power-conversion efficiency is greater for this material than for SiGe, which, until now, has been regarded as the state-of-the art high-temperature p-type thermoelectric material. Moreover, relative to SiGe, Yb14MnSb11 is better suited to incorporation into a segmented thermoelectric leg that includes the moderate-temperature p-type thermoelectric material CeFe4Sb12 and possibly other, lower-temperature p-type thermoelectric materials.

Posted in: Briefs

Read More >>

Polyimide-Foam/Aerogel Composites for Thermal Insulation

These composites may also afford enhanced acoustic attenuation. Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted “TEEK-H,” signifying a series, denoted “H,” within a family of polyimide foams that were developed at NASA’s Langley Research Center and are collectively denoted “TEEK” (an acronym of the inventors’ names).

Posted in: Briefs

Read More >>

Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

Improved polymer hydrophilicity is beneficial for cell culturing and implant growth. The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer’s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers.

Posted in: Bio-Medical, Briefs, TSP, Briefs, TSP, Coatings & Adhesives

Read More >>