Materials

Modeling Metamaterials Leads to Advance in Cloaking System Prototype

In efforts to use metamaterials to construct the world’s first working prototype of an invisibility cloak, researchers relied on multiphysics software. Modeling software is generally used to show the fields and flows that are impossible to see with the eye or instruments. A group of researchers has done just the opposite: They ran computer simulations that showed it should be possible to fabricate the metamaterials necessary to build an “invisibility cloak” that makes an object invisible to certain frequencies.

Posted in: Materials, Briefs

Read More >>

Lightweight Thermal Protection System for Atmospheric Entry

The material withstands up to 1,970 K to protect wing leading edges and nose caps on hypersonic vehicles. TUFROC (Toughened Uni-piece Fibrous Reinforced Oxidation- resistant Composite) has been developed as a new thermal protection system (TPS) material for wing leading edge and nose cap applications. The composite withstands temperatures up to 1,970 K, and consists of a toughened, high-temperature surface cap and a low-thermal- conductivity base, and is applicable to both sharp and blunt leading edge vehicles. This extends the possible application of fibrous insulation to the wing leading edge and/or nose cap on a hypersonic vehicle.

Posted in: Materials, Briefs, TSP

Read More >>

Nanowicks

Fiber geometries could be tailored for pumping, filtering, mixing, separating, and other effects. Nanowicks are dense mats of nanoscale fibers that are expected to enable the development of a variety of novel capillary pumps, filters, and fluidic control devices. Nanowicks make it possible obtain a variety of novel effects, including capillary pressures orders of magnitude greater than those afforded by microscale and conventional macroscale wicks. While wicking serves the key purpose of transporting fluid, the nanofiber geometry of a nanowick makes it possible to exploit additional effects — most notably, efficient nanoscale mixing, fluidic effects for logic or control, and ultrafiltration (in which mats of nanofibers act as biomolecular sieves).

Posted in: Materials, Briefs, TSP

Read More >>

Strong, Lightweight, Porous Materials

These materials, derived from silica aerogels, can be tailored to have superior properties. A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets XAerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

Posted in: Materials, Briefs, TSP

Read More >>

Filled Skutterudites as Thermoelectric Materials

The highest known thermoelectric figure of merit was observed in one of these materials. Filled skutterudites have shown promise as semiconducting materials with superior thermoelectric properties at temperatures up to at least 650 °C. This finding is a breakthrough in a continuing investigation of the potential utility of skutterudites as thermoelectric materials. Previous results of this investigation were reported in several articles in NASA Tech Briefs; namely, "Skutterudite Compounds for Power Semiconductor Devices" (NPO-19378), NASA Tech Briefs, Vol. 20, No. 3 (March 1996), page 60; "Two Potentially Useful Ternary Skutterudite Compounds" (NPO-19409), NASA Tech Briefs, Vol. 20, No. 11 (November 1996), page 66; and "Preparation and Some Properties of n-Type IrxCo1 — xSb3" (NPO-19852), NASA Tech Briefs, Vol. 20, No. 11 (November 1996), page 94.

Posted in: Materials, Briefs, TSP

Read More >>

Internal-Combustion Engines With Ringless Carbon Pistons

Efficiencies would be higher and weights lower than those of conventional engines. Internal-combustion engines would be constructed with cylinders and ringless pistons made of lightweight carbon/carbon composite materials, according to a proposal. This proposal is a logical extension of previous research that showed that engines that contain carbon/carbon pistons with conventional metal piston rings running in conventional metal cylinders perform better than do engines with conventional aluminum-alloy pistons. The observed performance improvement (measured as increased piston life during high-performance operation) can be attributed mainly to the low thermal expansion of the carbon-carbon composite. Carbon-carbon pistons can continue to operate under thermal loads that cause aluminum pistons to seize or sustain scuffing damage due to excessive thermal growth and thermal distortion.

Posted in: Materials, Briefs

Read More >>

Ceramics Made From Wood

Properties can be tailored in many different ways. The term “ecoceramics” (a contraction of “environment-conscious ceramics”) denotes a class of ceramics made partly from wood-based products, which can include natural wood, sawdust, cardboard, and/ or paper. In addition to the environmental advantage of renewability of the carbonaceous ingredients, the concept of ecoceramics offers an advantage of tailorability of the properties of the ceramic end products.

Posted in: Materials, Briefs, TSP

Read More >>