Materials & Coatings

Convergence Nanoparticles for Multi-Modal Biomedical Imaging

This technique enables detection, sensing, navigation, and actuation in a single nanosystem. A project is underway to develop a novel, versatile, multi-functional convergence nanoparticle system that utilizes inorganic nanoparticles for advanced biomedical applications. Inorganic nanoparticles exhibit improved optical, magnetic, and electronic properties compared to classical bulk materials, making them useful as key components for futuristic nano-device applications.

Posted in: Bio-Medical, Briefs, TSP, Briefs, TSP, Coatings & Adhesives, Diagnostics

Read More >>

Droplet-Based Production of Liposomes

A process for making monodisperse liposomes having lipid bilayer membranes involves fewer, simpler process steps than do related prior methods. First, a microfluidic, cross-junction droplet generator is used to produce vesicles comprising aqueous-solution droplets contained in single-layer lipid membranes. The vesicles are collected in a lipid-solvent mix that is at most partially soluble in water and is less dense than is water. A layer of water is dispensed on top of the solvent. By virtue of the difference in densities, the water sinks to the bottom and the solvent floats to the top. The vesicles, which have almost the same density as that of water, become exchanged into the water instead of floating to the top. As there are excess lipids in the solvent solution, in order for the vesicles to remain in the water, the addition of a second lipid layer to each vesicle is energetically favored.

Posted in: Bio-Medical, Briefs, Briefs, Coatings & Adhesives

Read More >>

Amorphous Silk Fibroin Membranes for Separation of CO2

Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation.

Posted in: Briefs

Read More >>

Catalysts for Efficient Production of Carbon Nanotubes

Some alloys have been found to work at lower temperatures. Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002).

Posted in: Briefs, TSP

Read More >>

Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

Room-temperature curing offers an important advantage in room-temperature functionality. Polyimide-PEO copolymers (“PEO” signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric- power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 °C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

Posted in: Briefs, TSP

Read More >>

Integrated Multilayer Insulation

IMLI offers several potential advantages over conventional MLI. Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal-insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI.

Posted in: Briefs

Read More >>

Nanocomposite Strain Gauges Having Small TCRs

Usefully large gauge factors and acceptably small drifts should also be attainable. Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500°F (about 816°C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate strain-gauge materials having TCRs as small as possible so as to minimize apparent strain.

Posted in: Briefs, TSP

Read More >>