Materials & Coatings

Strong, Lightweight, Porous Materials

These materials, derived from silica aerogels, can be tailored to have superior properties. A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets XAerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

Posted in: Briefs, TSP

Read More >>

Nanowicks

Fiber geometries could be tailored for pumping, filtering, mixing, separating, and other effects. Nanowicks are dense mats of nanoscale fibers that are expected to enable the development of a variety of novel capillary pumps, filters, and fluidic control devices. Nanowicks make it possible obtain a variety of novel effects, including capillary pressures orders of magnitude greater than those afforded by microscale and conventional macroscale wicks. While wicking serves the key purpose of transporting fluid, the nanofiber geometry of a nanowick makes it possible to exploit additional effects — most notably, efficient nanoscale mixing, fluidic effects for logic or control, and ultrafiltration (in which mats of nanofibers act as biomolecular sieves).

Posted in: Briefs, TSP

Read More >>

Lightweight Thermal Protection System for Atmospheric Entry

The material withstands up to 1,970 K to protect wing leading edges and nose caps on hypersonic vehicles. TUFROC (Toughened Uni-piece Fibrous Reinforced Oxidation- resistant Composite) has been developed as a new thermal protection system (TPS) material for wing leading edge and nose cap applications. The composite withstands temperatures up to 1,970 K, and consists of a toughened, high-temperature surface cap and a low-thermal- conductivity base, and is applicable to both sharp and blunt leading edge vehicles. This extends the possible application of fibrous insulation to the wing leading edge and/or nose cap on a hypersonic vehicle.

Posted in: Briefs, TSP

Read More >>

Coating Thermoelectric Devices To Suppress Sublimation

Thermoelectric materials are covered with adherent, chemically stable metal outer layers. A technique for suppressing sublimation of key elements from skutterudite compounds in advanced thermoelectric devices has been demonstrated. The essence of the technique is to cover what would otherwise be the exposed skutterudite surface of such a device with a thin, continuous film of a chemically and physically compatible metal. Although similar to other sublimation- suppression techniques, this technique has been specifically tailored for application to skutterudite antimonides.

Posted in: Briefs, TSP

Read More >>

Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

Melt infiltration offers advantages over chemical vapor infiltration. Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 °F (≈1,600 °C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 °F (≈2,400 °C) in a highly oxidizing thrust chamber environment. Moreover, because the meltinfiltration- based process takes much less time, the finished products are expected to cost much less.

Posted in: Materials, Briefs

Read More >>

Ultrahigh-Temperature Ceramics

Materials are being developed to withstand temperatures above 1,650 °C. Figure 1. Examples of UHTC Components areshown that have been tested in the NASA AmesArc Jet facility to evaluate the materialsresponse in a simulated reentry environment.The cone and wedge models are representativeof the scale and geometries anticipated for useon UHTC sharp leading-edge vehicles.Ultrahigh temperature ceramics (UHTCs) are a class of materials that include the diborides of metals such as hafnium and zirconium. The materials are of interest to NASA for their potential utility as sharp leading edges for hypersonic vehicles. Such an application requires that the materials be capable of operating at temperatures, often in excess of 2,000 °C. UHTCs are highly refractory and have high thermal conductivity, an advantage for this application. UHTCs are potentially applicable for other high- temperature processing applications, such as crucibles for molten-metal processing and high-temperature electrodes.

Posted in: Briefs, TSP

Read More >>

Improved C/SiC Ceramic Composites Made Using PIP

These materials are expected to remain strong for longer times at high temperatures. Improved carbon-fiber- reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix.

Posted in: Briefs

Read More >>