Materials & Coatings

Progress Toward Making Epoxy/Carbon-Nanotube Composites

A modicum of progress has been made in an effort to exploit single-walled carbon nanotubes as fibers in epoxy-matrix/fiber composite materials. Two main obstacles to such use of carbon nanotubes are the following: (1) bare nanotubes are not soluble in epoxy resins and so they tend to agglomerate instead of becoming dispersed as desired; and (2) because of lack of affinity between nanotubes and epoxy matrices, there is insufficient transfer of mechanical loads between the nanotubes and the matrices.

Posted in: Briefs, TSP

Read More >>

Electrocatalytic Reduction of Carbon Dioxide to Methane

A room-temperature electrocatalytic process that effects the overall chemical reaction CO2 + 2H2O → CH4 + 2O2 has been investigated as a means of removing carbon dioxide from air and restoring oxygen to the air. The process was originally intended for use in a spacecraft life-support system, in which the methane would be vented to outer space. The process may also have potential utility in terrestrial applications in which either or both of the methane and oxygen produced might be utilized or vented to the atmosphere.

Posted in: Briefs, TSP

Read More >>

Oxide Fiber Cathode Materials for Rechargeable Lithium Cells

LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively.

Posted in: Briefs

Read More >>

Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme

A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. The usual process is long and arduous, requiring multiple washing and soaking steps to infiltrate oxide with the polymer precursor after gelation. Additionally, diffusion problems can result in aerogel monoliths that are not uniformly cross-linked.

Posted in: Briefs

Read More >>

Coated Glass for Transparent Heating Elements

This coated glass can be used in high-humidity and high-altitude applications such as architectural and aircraft windows. Applying an electric current to specially coated glass results in radiant heat energy. This process creates a transparent heating element with near- uniform surface temperatures. Manufacturing the heating element requires an ordinary pane of float glass. A fluorine-doped tin oxide coating (SnO2:F) measuring 0.25 micron thick is applied to one surface of the glass during fabrication. The coating conducts electricity, has a very tightly controlled resistance, has no appreciable color or structure, and is quite transparent. The coating has low emissivity properties that help contribute to the efficiency of the heated glass.

Posted in: Briefs

Read More >>

Hall-Effect Thruster Utilizing Bismuth as Propellant

A laboratory-model Hall-effect spacecraft thruster was developed that utilizes bismuth as the propellant. Xenon was used in most prior Hall-effect thrusters. Bismuth is an attractive alternative because it has a larger atomic mass, a larger electron- impact- ionization cross-section, and is cheaper and more plentiful.

Posted in: Briefs

Read More >>

High-Temperature Crystal-Growth Cartridge Tubes Made by VPS

Mechanical properties and maximum useful temperature exceed those of tungsten-alloy tubes. Cartridge tubes for use in a crystal-growth furnace at temperatures as high as 1,600°C have been fabricated by vacuum plasma spraying (VPS). These cartridges consist mainly of an alloy of 60 weight percent molybdenum with 40 weight percent rhenium, made from molybdenum powder coated with rhenium. This alloy was selected because of its high melting temperature (≈2,550°C) and because of its excellent ductility at room temperature. These cartridges are intended to supplant tungsten/nickel-alloy cartridges, which cannot be used at temperatures above ≈1,300°C.

Posted in: Briefs

Read More >>

White Papers

Removing the Gap Between ECAD and MCAD Design
Sponsored by Mentor Graphics
Achieving Better Adhesion with Proper Surface Preparation
Sponsored by master bond
Reducing Development Cycles for 3U VPX Systems
Sponsored by curtiss wright
Sphere Versus 45°/0° Versus Multi-angle: A Discussion Of Industrial Use Cases
Sponsored by x-rite
An Introduction to LED Capabilities
Sponsored by Photo Research
How Do You Assess Image Quality?
Sponsored by basler

White Papers Sponsored By: