Materials

Improved Small-Particle Powders for Plasma Spraying

Minimum layer thicknesses needed for complete coverage are reduced. Improved small-particle powders and powder-processing conditions have been developed for use in plasma spray deposition of thermal-barrier and environmentalbarrier coatings. Heretofore, plasmasprayed coatings have typically ranged in thickness from 125 to 1,800 µm. As explained below, the improved powders make it possible to ensure complete coverage of substrates at unprecedentedly small thicknesses — of the order of 25 µm.

Posted in: Materials, Briefs, TSP

Read More >>

Advanced Metal Foam Structures for Outer Space

A document discusses a proposal to use advanced materials — especially bulk metallic glass (BMG) foams — in structural components of spacecraft, lunar habitats, and the like. BMG foams, which are already used on Earth in some consumer products, are superior to conventional metal foams: BMG foams have exceptionally low mass densities and high strength-to-weight ratios and are more readily processable into strong, lightweight objects of various sizes and shapes. These and other attractive properties of BMG foams would be exploited, according to the proposal, to enable in situ processing of BMG foams for erecting and repairing panels, shells, containers, and other objects. The in situ processing could include (1) generation of BMG foams inside prefabricated deployable skins that would define the sizes and shapes of the objects thus formed and (2) thermoplastic deformation of BMG foams. Typically, the generation of BMG foams would involve mixtures of precursor chemicals that would be subjected to suitable pressure and temperature schedules. In addition to serving as structural components, objects containing or consisting of BMG foams could perform such functions as thermal management, shielding against radiation, and shielding against hypervelocity impacts of micrometeors and small debris particles.

Posted in: Materials, Briefs, TSP

Read More >>

Bonding-Compatible Corrosion Inhibitor for Rinsing Metals

Strong adhesive bonds can be made after rinsing with corrosion-inhibiting solutions. A corrosion-inhibiting mixture of compounds has been developed for addition to the water used to rinse metal parts that have been cleaned with aqueous solutions in preparation for adhesive bonding of the metals to rubber and rubberlike materials. Prior to the development of this corrosion inhibitor, the parts (made, variously, of D6AC steel and 7075-T73 aluminum) were rinsed by deionized water, which caused corrosion in some places on the steel parts — especially in such occluded places as sealing surfaces and threaded blind holes.

Posted in: Materials, Briefs

Read More >>

Water-Based Pressure-Sensitive Paints

Toxicity, and thus costs of ventilation and cleanup, is substantially reduced. Water-based pressure-sensitive paints (PSPs) have been invented as alternatives conventional organic- solvent-based pressure-sensitive paints, which are used primarily for indicating distributions of air pressure on wind-tunnel models. Typically, PSPs are sprayed onto aerodynamic models after they have been mounted in wind tunnels. When conventional organic- solvent- based PSPs are used, this practice creates a problem of removing toxic fumes from inside the wind tunnels. The use of water-based PSPs eliminates this problem. The water-based PSPs offer high performance as pressure indicators, plus all the advantages of common water-based paints low toxicity, low concentrations of volatile organic compounds, and easy cleanup by use of water).

Posted in: Materials, Briefs, TSP

Read More >>

Selective Plasma Deposition of Fluorocarbon Films on SAMs

The fluorocarbon films are useful as etch masks and perhaps as dielectric layers. A dry plasma process has been demonstrated to be useful for the selective modification of self-assembled monolayers (SAMs) of alkanethiolates. These SAMs are used, during the fabrication of semiconductor electronic devices, as etch masks on gold layers that are destined to be patterned and incorporated into the devices. The selective modification involves the formation of fluorocarbon films that render the SAMs more effective in protecting the masked areas of the gold against etching by a potassium iodide KI) solution. This modification can be utilized, not only in the fabrication of single electronic devices but also in the fabrication of integrated circuits, microelectromechanical systems, and circuit boards.

Posted in: Materials, Briefs

Read More >>

Ion-Exclusion Chromatography for Analyzing Organics in Water

Resolution of nonvolatile organic compounds is increased significantly. A liquid-chromatography technique has been developed for use in the quantitative analysis of urea (and of other nonvolatile organic compounds typically found with urea) dissolved in water. The technique involves the use of a column that contains an ion- exclusion resin; heretofore, this column has been sold for use in analyzing mono- saccharides and food softeners, but not for analyzing water supplies.

Posted in: Materials, Briefs

Read More >>

Making Plant-Support Structures From Waste Plant Fiber

Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet.

Posted in: Materials, Briefs

Read More >>

White Papers

Using Linux in Medical Devices: What Developers and Manufacturers Need to Know
Sponsored by Wind River
3D Printing in Space: The Next Frontier
Sponsored by Stratasys
Back to Basics of Electrical Measurement
Sponsored by Keithley
Reliability Testing of GORE® Protective Vents in LED Luminaires
Sponsored by Gore
Antenna Basics
Sponsored by Rohde and Schwarz
Future Advances in Body Electronics
Sponsored by Freescale

White Papers Sponsored By: