Materials & Coatings

Corrosion Inhibitors as Penetrant Dyes for Radiography

These substances now have dual uses. A Weld Crack Is More Clearly Visible in a neutron radiograph made after treatment with an LVCI. Liquid/vapor-phase corrosion inhibitors (LVCIs) have been found to be additionally useful as penetrant dyes for neutron radiography (and perhaps also x-radiography). Enhancement of radiographic contrasts by use of LVCIs can reveal cracks, corrosion, and other defects that may be undetectable by ultrasonic inspection, that are hidden from direct optical inspection, and/or that are difficult or impossible to detect in radiographs made without dyes.

Posted in: Materials, Briefs

Read More >>

Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic

The explicit model predicts some quantities that a prior implicit model cannot. An explicit material model that uses predicted pressure in the pores of a carbon-cloth phenolic (CCP) composite has been developed. This model is intended to be used within a finite-element model to predict phenomena specific to CCP components of solid-fuel-rocket nozzles subjected to high operating temperatures and to mechanical stresses that can be great enough to cause structural failures. Phenomena that can be predicted with the help of this model include failures of specimens in restrained-thermal-growth (RTG) tests, pocketing erosion, and ply lifting. Heretofore, an implicit formulation has been used to model the pore pressure. The differences between explicit and implicit models can be illustrated with the theoretical solution for stress and strain in an RTG test. The equations for the explicit case are:

Posted in: Briefs

Read More >>

Treatment To Destroy Chloro-hydrocarbon Liquids in the Ground

Emulsified iron is injected into the ground and left there. A relatively simple chemical treatment that involves the use of emulsified iron has been found to be effective in remediating groundwater contaminated with trichloroethylene and other dense chlorohydrocarbon liquids. These liquids are members of the class of dense, non-aqueous phase liquids (DNAPLs), which are commonly recognized to be particularly troublesome as environmental contaminants. The treatment converts these liquids into less-harmful products.

Posted in: Briefs, TSP

Read More >>

Process for Smoothing an Si Substrate After Etching of SiO2

Reactive-ion etching can be tailored to minimize undesired side effects. A reactive-ion etching (RIE) process for smoothing a silicon substrate has been devised. The process is especially useful for smoothing those silicon areas that have been exposed by etching a pattern of holes in a layer of silicon dioxide that covers the substrate. Applications in which one could utilize smooth silicon surfaces like those produced by this process include fabrication of optical waveguides, epitaxial deposition of silicon on selected areas of silicon substrates, and preparation of silicon substrates for deposition of adherent metal layers.

Posted in: Briefs, TSP

Read More >>

Flexible Composite-Material Pressure Vessel

A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

Posted in: Briefs, TSP

Read More >>

Lower-Conductivity Thermal-Barrier Coatings

Additional stabilizers are incorporated into yttria-stabilized zirconia. Thermal-barrier coatings (TBCs) that have both initial and post-exposure thermal conductivities lower than those of yttria-stabilized zirconia TBCs have been developed. TBCs are thin ceramic layers, generally applied by plasma spraying or physical vapor deposition, that are used to insulate air-cooled metallic components from hot gases in gas turbine and other heat engines. Heretofore, yttria-stabilized zirconia (nominally comprising 95.4 atomic percent ZrO2 + 4.6 atomic percent Y2O3) has been the TBC material of choice. The lower-thermal-conductivity TBCs are modified versions of yttria-stabilized zirconia, the modifications consisting primarily in the addition of other oxides that impart microstructural and defect properties that favor lower thermal conductivity.

Posted in: Briefs, TSP

Read More >>

Perovskite Superlattices as Tunable Microwave Devices

Interfacial interactions between paraelectric materials induce quasi-ferroelectric behavior. Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters.

Posted in: Briefs, TSP

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.