Mechanical Components

Powder Handling Device for Analytical Instruments

Powder is handled as a fluid via equipment that requires few or no moving parts. Ames Research Center, Moffett Field, California A new technology provides for automated sample handling and movement of coarse-grained powder or other solid materials to enable analysis by a robotic or totally automated computer system. Currently, many analytical instruments require a powder sample to control the shape and/or volume of the specimen, to increase the surface area of the specimen, to increase the statistical representation of a specimen when samples are not homogeneous with regard to the characterized property, and/or to increase the statistical representation of the specimen spatial orientation when the properties being characterized are not equivalent in different viewing directions. Grinding the material down to an ideal grain size is sometimes impossible, and conditioning the sample for analysis is often time-consuming and labor-intensive. In the new approach, the powder is handled as a fluid, using mechanical vibrations in conjunction with a driving force (gravity or gas flow), and requiring few or no moving parts.

Posted in: Mechanical Components, Briefs

Read More >>

Untethered Soft Robot Walks Through Flames

Developers from Harvard’s School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering have produced the first untethered soft robot — a quadruped that can stand up and walk away from its designers.The researchers were able to scale up earlier soft-robot designs, enabling a single robot to carry on its back all the equipment it needs to operate — micro-compressors, control systems, and batteries.Compared with earlier soft robots, which were typically no larger than a steno pad, the system is huge, measuring more than a half-meter in length and capable of carrying as much as 7½ pounds on its back.Giving the untethered robot the strength needed to carry mechanical components meant air pressures as high as 16 pounds per square inch, more than double the seven psi used by many earlier robot designs. To deal with the increased pressure, the robot had to be made of tougher stuff.The material settled on was a “composite” silicone rubber made from stiff rubber impregnated with hollow glass microspheres to reduce the robot’s weight. The robot’s bottom was made from Kevlar fabric to ensure it was tough and lightweight. The result was a robot that can stand up to a host of extreme conditions.SourceAlso: Learn about a Field-Reconfigurable Manipulator for Rovers.

Posted in: Materials, Composites, Mechanical Components, Motion Control, Motors & Drives, Machinery & Automation, Robotics, News

Read More >>

Universal Mechanical Testers for Tribology Testing in the Automotive Industry

Universal mechanical testers provide tribology testing for friction, wear, coatings, and lubrication in macro, micro, and nano regimes. Bruker Nano Surfaces, Tucson, Arizona Very few industries are as affected by strict test standards as the automotive sector. Nearly every automobile component (engine parts, accelerators, clutches, brakes, tires, seatbelts, etc.) must exhibit adequate tribological properties in accordance with ASTM, DIN, JIS, ISO, and other comprehensive international standards. Universal mechanical testers (UMTs) that are able to perform multiple tests in a single platform with interchangeable modules can help manufacturers meet test specifications quickly and economically. For example, crankshafts and camshafts have critical requirements for proper functioning under diverse service conditions. Tests include evaluation of base materials, heat-treated parts, surface coatings, and lubricants. Tests can be run with diverse loads, velocities, and temperatures that simulate actual service conditions using various lubricants and liquids.

Posted in: Mechanical Components, Test & Measurement, Briefs

Read More >>

Fail-Safe Accumulator for Internal Active Thermal Control Loops

Lyndon B. Johnson Space Center, Houston, Texas Spacecraft internal active thermal control systems (ATCSs) typically use water or a water mixture as their working fluid. A gas-charged bellows accumulator pressurizes the system and provides liquid inventory control. If only a single internal ATCS loop is used, the accumulator represents a single-point failure that can result in a loss of crew. To protect against this possibility, the normal practice is to add a second, fully redundant loop. A redundant loop requires duplication of cold plates, heat exchangers, and plumbing, even though these items are themselves highly reliable. Duplicating these reliable piece parts to protect against accumulator failure adds significant mass to the spacecraft.

Posted in: Mechanical Components, Briefs

Read More >>

Rocket Vent Design With Variable Flow Control and Rain Protection

Rugged design will ensure operation from pre-flight through flight. Marshall Space Flight Center, Alabama This innovation is a rocket purge vent design that can control and balance flow across multiple vents and across very large gas flow ranges while keeping water or other undesirable gases from entering into the vented space. When changing purge rates, this device adapts to the different flow rates to maintain a very low internal delta pressure. It provides a vent design that can withstand high winds and blowing rain without allowing water entry. With the rugged design, it can operate during all rocket operational phases, from pre-flight operations through flight. This design is useful for any device needing a one-way valve type purge or general air vent where rain and gas reverse entry must not occur.

Posted in: Mechanical Components, Briefs

Read More >>

Turbo-Brayton Converter for Fission Surface Power Applications

John H. Glenn Research Center, Cleveland, Ohio Producing electric power for space applications is challenging. Although short-term missions can use batteries or fuel cells, these sources are not practical for durations longer than one month. Photovoltaics become less attractive as the distance from the Sun increases, and they are ineffective in Sun-shadowed environments. For these types of missions, thermal-to-electric converters can produce electric power from nuclear heat sources. Potential converter technologies include thermoelectric, Stirling, Brayton, Rankine, thermophotovoltaic, and alkali metal thermal to electric conversion (AMTEC).

Posted in: Mechanical Components, Briefs

Read More >>

Vibration Ring

John H. Glenn Research Center, Cleveland, Ohio Machine vibration often originates with rotating driveline components such as rotors, gears, bearings, and fans. Such vibration is the source of unwanted noise and can be destructive to the machine. The vibration ring is a mechanism that provides an indirect damping effect, and is rigid enough to be mounted within the driveline. The mechanical structure of the vibration ring responds to vibratory excitation by stressing an embedded piezoelectric material. The material generates an electric charge, which is dissipated though an electric circuit. The net result is a reduction of vibration energy.

Posted in: Mechanical Components, Briefs

Read More >>

White Papers

Working With Mechanical Motion Subsystems
Sponsored by Bell Everman
Comparison of Interface Pressure Measurement Options
Sponsored by Tekscan
Primer on Laser Micromachining of Polymer-Based Life Science Products
Sponsored by Resonetics
3D Printing with FDM: How it Works
Sponsored by Stratasys
Powering Wearable Technology and the Internet of Everything
Sponsored by Cymbet
Reverse Engineering
Sponsored by Servometer

White Papers Sponsored By: