Mechanical & Fluid Systems

Designing for Mechanical and Signal Integrity in Handheld Medical Treatment Applications

Handheld medical devices must perform across a wide range of device specifications and end-user environmental conditions. Mechanical and signal integrity of cable components is especially important for high-level performance, accuracy, durability, longevity, and user satisfaction. A great variety of insulating and jacketing material options exist for wire and cable in medical electronics. Performance factors that affect material selection decisions include biocompatibility, disinfection and sterilization compatibility, revision control assurance, environmental regulatory compliance, aesthetics, flexibility, durability, and cost. Subtle differences in priority may result in significant differences in product design, as well as overall cost.

Posted in: White Papers, White Papers, Manufacturing & Prototyping, Mechanical Components, Bio-Medical, Medical

Read More >>

Unique Method for Orifice Production

To produce accurate, repeatable orifices, all the variables that might influence the Cd Value (Coefficient of Discharge) must be controlled during production. This includes the orifice hole length, edges, surface finishes, roundness and the elimination of all tool marks, burrs, ragged edges and irregularities. If any one of these areas is not perfectly managed, the orifice flow rates will vary from piece to piece thereby making it impossible to predict flow with any accuracy.

Posted in: White Papers, White Papers, Mechanical Components, Mechanics

Read More >>

Machine Positioning Uncertainty with Laser Interferometer Feedback

Laser interferometers are used as a measurement reference for machine correction and accuracy validation in the production of many high precision motion systems. Under controlled environmental conditions, laser interferometer measurement can provide low measurement uncertainty relative to the achievable accuracy of most commonly used motion control devices. As such, when processes require the utmost precision, laser interferometer measurement near the machine’s work point is frequently used as the feedback mechanism for machine control. In these instances, the use of laser interferometry to characterize the machine’s motion is unjustified because the measurement uncertainty of the metrology system is equivalent or higher than the motion error. The accuracy of these machines’ motion must be equated to an uncertainty in the feedback system’s measurement of the defined work point’s motion.

Posted in: White Papers, Mechanical Components, Mechanics

Read More >>

Pedal Position Sensing in Heavy-Duty Vehicles

Pedal position detection is nothing new when it comes to operation of heavy duty equipment. However, the age old system operation of mechanical linkages between the pedal and the engine just might be coming to an end. New sensor technology is now enabling non-contact, drive-by-wire that can reduce total system cost while standing up to the harsh environments of off highway equipment.

Posted in: White Papers, Mechanical Components, Fluid Handling, Motion Control, Data Acquisition, Sensors

Read More >>

How to Make Low Flow Measurements Using Turbine Flow Meters

Accurate low flow measurement represents significant challenges in many applications. Some typical low flow applications in the aerospace market include: small UAV fuel consumption, satellite thruster fuel consumption, and fuel/chemical/water injection. The low dynamic energy associated with flow rates down to 0.001 GPM exceed the capabilities of most mechanical flow meters and force the use of less accurate flow meter technologies.

Posted in: White Papers, Instrumentation, Mechanical Components, Data Acquisition, Sensors

Read More >>

Epoxy-based Hermetic Feedthroughs Boost Switchgear Reliability

With medium-voltage switchgear, progress is being made with regard to finding alternatives to SF6 as an insulation gas. Designs that incorporate dry air or a mixture of fluoroketone, nitrogen and oxygen as the insulating gas are being explored to minimize environmental impact.

Posted in: White Papers, Aerospace, Defense, Mechanical Components, Mechanics

Read More >>

How to Prevent Step Losses with Stepper Motors

While stepper motors are an excellent solution for many applications, a key concern is step losses. However, in most instances step losses can be prevented or corrected. It is important to remember that a stepper motor does not operate like a DC motor. This white paper from MICROMO engineers provides guidance to determine step losses or non-operation across a variety of applications.

Posted in: White Papers, White Papers, Mechanical Components, Medical, Motion Control, Motors & Drives

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.