Mechanical Components

DROP: Durable Reconnaissance and Observation Platform

The platform would advance the ability of a soldier or law enforcement person to look ahead or inside of buildings. Robots have been a valuable tool for providing a remote presence in areas that are either inaccessible or too dangerous for humans. Having a robot with a high degree of adaptability becomes crucial during such events. The adaptability that comes from high mobility and high durability greatly increases the potential uses of a robot in these situations, and therefore greatly increases its usefulness to humans. DROP is a lightweight robot that addresses these challenges with the capability to survive large impacts, carry a usable payload, and traverse a variety of surfaces, including climbing vertical surfaces like wood, stone, and concrete. The platform is crash-proof, allowing it to be deployed in ways including being dropped from an unmanned aerial vehicle or thrown from a large MSL-class (Mars Science Laboratory) rover.

Posted in: Mechanics, Mechanical Components, Briefs, TSP

Read More >>

Gravity-Assist Mechanical Simulator for Outreach

New simulator is more effective than animation. There is no convenient way to demonstrate mechanically, as an outreach (or inreach) topic, the angular momentum trade-offs and the conservation of angular momentum associated with gravityassist interplanetary trajectories. The mechanical concepts that underlie gravity assist are often misunderstood or confused, possibly because there is no mechanical analog to it in everyday experience. The Gravity Assist Mechanical Simulator is a hands-on solution to this longstanding technical communications challenge. Users intuitively grasp the concepts, meeting specific educational objectives.

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>

Design for the Structure and the Mechanics of Moballs

The moball is envisioned to be a round, self-powered, and wind-driven multifunctioning sensor used in the Gone with the Wind ON-Mars (GOWON) [http://www.lpi.usra.edu/meetings/ marsconcepts2012/pdf/4238.pdf]: A Wind-Driven Networked System of Mobile sensors on Mars. The moballs would have sensing, processing, and communication capabilities. The moballs would perform in situ detection of key environmental elements such as vaporized water, trace gases, wind, dust, clouds, light and UV exposure, temperature, as well as minerals of interest, possible biosignatures, surface magnetic and electric fields, etc. The embedded various lowpower micro instruments could include a Multispectral Microscopic Imager (to detect various minerals), a compact curved focal plane array camera (UV/Vis/NIR) with a large field of view, a compact UV/Visible spectrometer, a micro-weather station, etc. The moballs could communicate with each other and an orbiter. Their wind- or gravity-driven rolling movement could be used to harvest and store electric energy. They could also generate and store energy using the sunlight, when available, and the diurnal temperature variations on Mars. The moballs would be self-aware of their (and their neighbors’) positions, energy storage, and memory availability; they would have processing power and could intelligently cooperate with neighboring moballs by distributing tasks, sharing data, and fusing information. The major advantages of using the wind-driven and spherical moball network over rovers or other fixed sensor webs to explore Mars would be: (1) moballs could explore a much larger expanse of Mars in a much faster fashion, (2) they could explore the difficult terrains such as steep slopes and sand dunes, and (3) they would be self-energygenerating and could work together and move around autonomously.

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>

Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging.

Posted in: Mechanics, Mechanical Components, Briefs, TSP

Read More >>

Pressure Dome for High-Pressure Electrolyzer

External gas pressure permits higher pressure and more versatile electrolyzer. A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (≈13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (≈690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure.

Posted in: Mechanics, Mechanical Components, Briefs, TSP

Read More >>

A Superfluid Pulse Tube Refrigerator Without Moving Parts for Sub-Kelvin Cooling

A report describes a pulse tube refrigerator that uses a mixture of 3He and superfluid 4He to cool to temperatures below 300 mK, while rejecting heat at temperatures up to 1.7 K. The refrigerator is driven by a novel thermodynamically reversible pump that is capable of pumping the 3He–4He mixture without the need for moving parts.

Posted in: Mechanics, Mechanical Components, Briefs, TSP

Read More >>

Sapphire Viewports for a Venus Probe

A document discusses the creation of a viewport suitable for use on the surface of Venus. These viewports are rated for 500 °C and 100 atm pressure with appropriate safety factors and reliability required for incorporation into a Venus Lander. Sapphire windows should easily withstand the chemical, pressure, and temperatures of the Venus surface. Novel fixture designs and seals appropriate to the environment are incorporated, as are materials compatible with exploration vessels. A test cell was fabricated, tested, and leak rate measured. The window features polish specification of the sides and corners, soft metal padding of the sapphire, and a metal C-ring seal. The system safety factor is greater than 2, and standard mechanical design theory was used to size the window, flange, and attachment bolts using available material property data. Maintenance involves simple cleaning of the window aperture surfaces. The only weakness of the system is its moderate rather than low leak rate for vacuum applications.

Posted in: Mechanics, Mechanical Components, Briefs, TSP

Read More >>