Mechanical & Fluid Systems

NEO Hunter Seeker Micro-Spacecraft and Mission Concept

Spacecraft mass and mission cost can be drastically reduced, including the ability to not only discover, but visit near Earth objects. NASA’s Jet Propulsion Laboratory, Pasadena, California The area of research known as “Planetary Defense” is largely concerned with identifying and tracking asteroids that could impact Earth. The vast majority of asteroids that pose such a risk are known as “Near Earth Asteroids/Objects” or NEAs and NEOs. Some of them are unknown, un-cataloged, and untracked, but are presumed to orbit in Earth-like orbits, and periodically cross Earth’s orbit in a possibly threatening manner.

Posted in: Briefs, TSP, Mechanical Components

Read More >>

Multipath, Multistage, Erosion-Resistive Valve for Downhole Flow Control

This valve can sustain the extremely high pressure of deep oil wells. NASA’s Jet Propulsion Laboratory, Pasadena, California Multipath, multistage, erosion-resistant flow control valves have been developed that can sustain the extremely high pressure of deep oil wells. Fitting in the restricted available space and operating using limited power with a long lifetime are challenges for choke valves in the downhole environment of oil wells. These valves must control the flow rate from high-pressure oil reservoirs in the presence of fluids that have non-zero sand concentrations. This design consists of a digitized flow control valve with multipath and multistage pressure reduction structures. Specifically, the valve is configured as a set of parallel flow paths from the inlet to the outlet.

Posted in: Briefs, TSP, Mechanical Components

Read More >>

Passive Close-Off Feature for Sample Acquisition and Retention

This design has applications in the oil and gas field, and in coring to collect samples from human internal organs for medical applications. NASA’s Jet Propulsion Laboratory, Pasadena, California The current coring bit and percussive drilling style works very well for strong rocks; however, when coring into weak, crumbling rock, the core tends to break apart and simply fall out of the bit. These rocks, powder, and other debris can have useful information that is lost when they fall out of the bit after the core has been made, as there is no retention feature in place. A retention mechanism for coring into weak rocks was developed.

Posted in: Briefs, TSP, Mechanical Components

Read More >>

Piezoelectric-Actuated Cryogenic Thermodynamic Vent Valve

Piezoceramic transducer elements with ceramic dielectric coating were successfully used in the actuator system. Lyndon B. Johnson Space Center, Houston, Texas Cryogenic fluid control valves require actuation that controls the geometric position of the orifice in a thermally stable manner. Traditional actuator devices may have various materials used in their construction that have varying CTEs (coefficients of thermal expansion) and therefore may shift (expand or contract) relative to the reference mounting points on the valve body. This leads to a lack of valve orifice control and leakage in the valve. To provide a more thermally stable control valve for cryogenic fluids, Dynamic Structures and Materials LLC (DSM LLC) provided a piezoelectric ceramic-driven actuation system on a cryogenic thermodynamic vent system (TVS) valve.

Posted in: Briefs, TSP, Mechanical Components

Read More >>

Amine Swingbed Payload

This system minimizes water and air loss. Lyndon B. Johnson Space Center, Houston, Texas The amine swingbed was in development for incorporation into Orion’s environmental control and life support system to remove metabolic carbon dioxide and humidity from the crew atmosphere. The compact, low-power swingbed uses space vacuum to regenerate itself. Direction was given by NASA to develop it for a payload experiment on ISS using the most recent engineering development laboratory unit. To minimize overboard humidity and crew cabin ullage losses, a method for removing humidity upstream of the amine swingbed had to be developed, along with a means to minimize overboard ullage losses when the swingbed cycled.

Posted in: Briefs, Mechanical Components

Read More >>

Decelerator System Simulation (DSS)

Lyndon B. Johnson Space Center, Houston, Texas The Crew Exploration Vehicle Parachute Assembly System (CPAS) project conducts computer simulations to verify that requirements on flight performance, parachute loads, and terminal rate of descent are met. The objective of this work was to obtain a high-fidelity simulation of Orion crew capsule flight test vehicles during parachute flight.

Posted in: Briefs, TSP, Mechanical Components

Read More >>

Miniature, Multi-Functional, Self-Braking Vehicle

This vehicle is actuated by piezoelectric stacks through the fuselage walls. NASA’s Jet Propulsion Laboratory, Pasadena, California A novel, miniature, low-mass vehicle has been created that is driven by piezoelectric stacks and a resonance structure. Preliminary tests on similar mechanisms that are used to transmit electrical power across the wall showed efficiencies of the order of 90%. The transmitted mechanical power, and signals through metallic walls using the direct and indirect piezoelectric effects in similar motors, is of the order of 50%. The transmitted power is generated inside the vehicle body, and the mechanism is applicable to any robotic system that may require an ambulation of locomotion mechanism such as a rover, a miniature vehicle, a crawler, or a flying device.

Posted in: Briefs, TSP, Mechanical Components

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.