Mechanical Components

Vortobots

Vortex-generating microscopic robots would move in swarms. The term “vortobots” denotes proposed swimming robots that would have dimensions as small as micrometers or even nanometers and that would move in swarms through fluids by generating and exploiting vortices in a cooperative manner. Vortobots were conceived as means of exploring confined or otherwise inaccessible fluid environments: they are expected to be especially attractive for biomedical uses like examining the interiors of blood vessels.

Posted in: Mechanical Components, Briefs, TSP

Read More >>

Ultrasonic/Sonic Jackhammer

Advantages include low noise, low vibration, and low average power demand. An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices, the first of which were reported in “Ultrasonic/Sonic Drill/Corers With Integrated Sensors” (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2003), page 38. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers, as discussed below.

Posted in: Mechanical Components, Briefs, TSP

Read More >>

Nanoactuators Based on Electrostatic Forces on Dielectrics

Large force-to-mass ratios could be achieved at the nanoscale. Nanoactuators of a proposed type would exploit the forces exerted by electric fields on dielectric materials. As used here, “nanoactuators” includes motors, manipulators, and other active mechanisms that have dimensions of the order of nanometers and/or are designed to manipulate objects that have dimensions of the order of nanometers.

Posted in: Mechanical Components, Briefs, TSP

Read More >>

Robot Forearm and Dexterous Hand

The hand is highly anthropomorphic and even includes a folding palm. An electromechanical hand-and-forearm assembly has been developed for incorporation into an anthropomorphic robot that would be used in outer space. The assembly is designed to offer manual dexterity comparable to that of a hand inside an astronaut’s suit; thus, the assembly may also be useful as a prosthesis or as an end effector on an industrial robot.

Posted in: Mechanical Components, Briefs

Read More >>

Synthetic Bursae for Robots

Functions would be similar to those of natural bursae. Synthetic bursae are under development for incorporation into robot joints that are actuated by motor-driven cables in a manner similar to that of arthropod joints actuated by muscle-driven tendons. Like natural bursae, the synthetic bursae would serve as cushions and friction reducers.

Posted in: Mechanical Components, Briefs

Read More >>

Software for Secondary-School Learning About Robotics

The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science.

Posted in: Mechanical Components, Briefs

Read More >>

Thermally Insulating, Kinematic Tensioned-Fiber Suspension

Tensioned polymer fibers afford both rigidity and high thermal resistance. Figure 1 shows a salt pill and some parts of a thermally insulating, kinematic suspension system that holds the salt pill rigidly in an adiabatic demagnetization refrigerator (ADR). “Salt pill” in this context denotes a unit comprising a cylindrical container, a matrix of gold wires in the container, and a cylinder of ferric ammonium alum (a paramagnetic salt) that has been deposited on the wires. The structural members used in this system for both thermal insulation and positioning are aromatic polyamide fibers (Kevlar® or equivalent) under tension.

Posted in: Mechanical Components, Briefs, TSP

Read More >>