Mechanical Components

Synthetic Bursae for Robots

Functions would be similar to those of natural bursae. Synthetic bursae are under development for incorporation into robot joints that are actuated by motor-driven cables in a manner similar to that of arthropod joints actuated by muscle-driven tendons. Like natural bursae, the synthetic bursae would serve as cushions and friction reducers.

Posted in: Mechanical Components, Briefs

Read More >>

Software for Secondary-School Learning About Robotics

The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science.

Posted in: Mechanical Components, Briefs

Read More >>

Thermally Insulating, Kinematic Tensioned-Fiber Suspension

Tensioned polymer fibers afford both rigidity and high thermal resistance. Figure 1 shows a salt pill and some parts of a thermally insulating, kinematic suspension system that holds the salt pill rigidly in an adiabatic demagnetization refrigerator (ADR). “Salt pill” in this context denotes a unit comprising a cylindrical container, a matrix of gold wires in the container, and a cylinder of ferric ammonium alum (a paramagnetic salt) that has been deposited on the wires. The structural members used in this system for both thermal insulation and positioning are aromatic polyamide fibers (Kevlar® or equivalent) under tension.

Posted in: Mechanical Components, Briefs, TSP

Read More >>

Back Actuators for Segmented Mirrors and Other Applications

Actuation mechanisms could be simpler. Back actuators have been proposed as alternatives to edge actuators considered previously for use in aligning hexagonal segments of lightweight segmented astronomical mirrors planned for use in outer space. The proposed back actuators could also be useful on Earth as parts of wafer-conveyance systems in the semiconductor industry.

Posted in: Mechanical Components, Briefs, TSP

Read More >>

Mechanism for Self-Reacted Friction Stir Welding

This mechanism performs better than others that have been tried. A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below.

Posted in: Mechanical Components, Briefs

Read More >>

Simple Systems for Detecting Spacecraft Meteoroid Punctures

A report describes proposed systems to be installed in spacecraft to detect punctures by impinging meteoroids or debris. Relative to other systems that have been used for this purpose, the proposed systems would be simpler and more adaptable, and would demand less of astronauts' attention and of spacecraft power and computing resources. The proposed systems would include a thin, hollow, hermetically sealed panel containing an inert fluid at a pressure above the spacecraft cabin pressure. A transducer would monitor the pressure in the panel. It is assumed that an impinging object that punctures the cabin at the location of the panel would also puncture the panel. Because the volume of the panel would be much smaller than that of the cabin, the panel would lose its elevated pressure much faster than the cabin would lose its lower pressure. The transducer would convert the rapid pressure drop to an electrical signal that could trigger an alarm. Hence, the system would provide an immediate indication of the approximate location of a small impact leak, possibly in time to take corrective action before a large loss of cabin pressure could occur.

Posted in: Mechanical Components, Briefs

Read More >>

Lightweight Exoskeletons With Controllable Actuators

Resistive or assistive forces and torques would be generated on command. A proposed class of lightweight exoskeletal electromechanical systems would include electrically controllable actuators that would generate torques and forces that, depending on specific applications, would resist and/or assist wearers’ movements. The proposed systems would be successors to relatively heavy, bulky, and less capable human strength amplifying exoskeletal electromechanical systems that have been subjects of research during the past four decades. The proposed systems could be useful in diverse applications in which there are needs for systems that could be donned or doffed easily, that would exert little effect when idle, and that could be activated on demand: examples of such applications include (1) providing controlled movement and/or resistance to movement for physical exercise and (2) augmenting wearers’ strengths in the performance of military, law-enforcement, and industrial tasks.

Posted in: Mechanical Components, Briefs, TSP

Read More >>