Mechanical Components

9 questions to ask when specifying a slewing ring bearing

In applications where a bearing must support a rotating structure (e.g. cranes, radar, tank turrets), premature failure can put people and equipment at risk. Designers choosing a slewing ring bearing for such applications should consider many factors, such as the bearing’s support structure, mounting (including bolt strength, tensioning and hole patterns), installation, and even storage. A new white paper from Kaydon Bearings, an SKF Group company, details nine key questions to ask when specifying a slewing ring bearing.

Posted in: Mechanical Components, White Papers

Read More >>

Titan Lake and Shore Sampler

The device is suitable for cryogenic dispensing of fluids, and for cryocoolers. NASA’s Jet Propulsion Laboratory, Pasadena, California A lake and shore sampling and sample distribution system was developed for a Titan lake environment (93.7 K, in liquid hydrocarbons). The Titan Lake and Shore Sampler (TLASS) would enable the chemical analysis of hydrocarbon lake samples via a Dual Rectilinear Ion and Orbitrap Mass Spectrometer and Nuclear Magnetic Resonance (NMR) Spectrometry.

Posted in: Information Sciences, Electronics & Computers, Mechanical Components, Data Acquisition, Briefs

Read More >>

Hydraulic High-Pressure Valve Controller Using the In Situ Pressure Difference

This technology is applicable to any system or device requiring high-pressure-differential valves. NASA’s Jet Propulsion Laboratory, Pasadena, California Various applications exist where high-pressure valves are required, but the problem for control of such valves lies in that they have to move against a strong pressure differential that may require significant force, energy, and large actuators. The solution to this problem is to take advantage of the in situ pressure differential to operate valves by opening small valves to change the pressure on either chamber of a hydraulic cylinder that is connected to the valve’s moving element.

Posted in: Mechanical Components, Briefs

Read More >>

Safely Testing Parachute-Based Extraction Systems

Functional testing can be conducted under a wide range of performance parameters. Lyndon B. Johnson Space Center, Houston, Texas This invention relates to the safe, reliable, and repeatable testing under external load of the Extraction Force Transfer Coupling (EFTC) currently used in the extraction of airdrop platforms from both the C-17 and C-130 cargo transport aircraft. The invention enables functional testing of the EFTC at various loading angles and load magnitudes, as well as in different hardware configurations, to verify its performance in both nominal and off-nominal extraction scenarios.

Posted in: Mechanical Components, Briefs

Read More >>

Hybrid Gear

This gear can transfer the same level of torque as an all-metallic gear, but with lower weight and modified vibration/noise. John H. Glenn Research Center, Cleveland, Ohio Reducing stiffness-induced gear noise and making lighter-weight gearing components would be a substantial advantage over the current all-metallic configuration. The use of composites to join metallic hubs to the metallic gear rim would reduce manufacturing costs of large aerospace gears, with weight reductions and modified noise/vibration response. All-metallic gearing components do little to dampen the gear meshing noise induced by the nonlinear tooth stiffness during the meshing process. With a composite web, this metallic path for vibration and noise transfer would be eliminated and alter the resultant transmitted noise/vibration.

Posted in: Mechanical Components, Briefs

Read More >>

Pulley Mechanism Improves Hand Function After Surgery

Engineers at Oregon State University have developed and successfully demonstrated a simple pulley mechanism to improve hand function after surgery. The device is one of the first instruments ever created that could improve the transmission of mechanical forces and movement while implanted inside the body.

Posted in: Mechanical Components, Motion Control, Rehabilitation & Physical Therapy, Medical, News

Read More >>

Hovercraft Landing System

Ames Research Center, Moffett Field, California A concept for recovering reusable spacecraft or capsules, or reusable rocket boosters, has them land on an airbag-based, cushioned platform positioned on a highly maneuverable hovercraft. This landing method would have performance advantages over conventional approaches to reusability by placing most of the landing function on the hovercraft while maintaining the safety benefit of an open ocean landing away from populated areas; however, it would be similar to a dry landing as the spacecraft or booster would not enter the water.

Posted in: Mechanical Components, Briefs, TSP

Read More >>