Mechanical & Fluid Systems

Next-Generation, Lightweight Hard Upper Torso/Hatch Assembly

Lyndon B. Johnson Space Center, Houston, Texas The current MK-III carbon-graphite/epoxy Hard Upper Torso (HUT)/hatch assembly represented an 8.3 psi (≈57 kPa) technology demonstrator model of a zero pre-breathe suit. In this configuration, the MK-III suit weighed about 120 lb (≈54 kg). Since future lunar/planetary suits will need to operate under the influence of gravity, as well as operate at 4.3 psi (≈30 kPa), the weight of the suit had to be reduced to a minimum of 79 lb (≈36 kg) with the incorporation of lightweight structural materials and slight HUT/hatch assembly geometric redesign.

Posted in: Briefs, TSP, Aerospace, Mechanical Components, Lightweight materials, Protective clothing, Lightweighting


Elastic Deployable Composite Tubular Roll-Out Boom

Goddard Space Flight Center, Greenbelt, Maryland The objective of this work was to develop an innovative deployable boom/structure technology that is ultra-lightweight (<30-grams/meter potential), and has extremely compact stowage volume (>100:1 compaction ratio), broad scalability (no size limits envisioned), high deployed frequency, high deployed strength, good thermal/dimensional stability, reliable/immediate and repeatable controlled deployment, high stiffness maintained during the entire deployment sequence, affordability (simple, easily produced tubular structure, very low parts count, and proven tube manufacture provides low cost and rapid assembly), space environmental survivability, and broad mission applicability.

Posted in: Briefs, TSP, Aerospace, Mechanical Components, Composite materials, Lightweighting


Reduced-Speed Duplex-Ring Seal

This configuration seals fluid flow and pressure at a significant increase in machine shaft speed. John H. Glenn Research Center, Cleveland, Ohio Ring seals are used in rotating union applications where a fluid flow or hydraulic pressure signal is transferred from a static reference frame to a rotating component, such as a shaft, for the purpose of providing lubrication and/or a hydraulic signal to a component(s) in a rotating frame of reference. Ring seals are used in physically compact configurations.

Posted in: Briefs, TSP, Mechanical Components, Seals and gaskets


Performing Launch Depressurization Test on Large Test Articles Using Two Vacuum Chambers in Tandem

NASA’s Jet Propulsion Laboratory, Pasadena, California Two vacuum chambers were used in tandem to perform a launch depressurization test. The test article was mounted in a 10-ft (≈3 m) Vertical Vacuum Chamber (Chamber 248-10). The 25-ft (≈7.6-m) Space Simulator (Chamber 150-25) was rough-pumped and used for ullage.

Posted in: Briefs, TSP, Aerospace, Mechanical Components, Test procedures


Pyramid Micro-Electrofluidic-Spray Propulsion Thruster with Integrated Attitude and Thrust Vector Control

NASA’s Jet Propulsion Laboratory, Pasadena, California A micro-electrofluidic-spray propulsion (MEP) system was built on a micro scale, in which arrays of hundreds of nano-thrusters are etched on silicon wafers like ICs, only a centimeter on a side. Many dozens of these thruster chips can be arrayed to form a macro-thruster of finite and significant thrust. Approximately 300 centimeter-square, 100-micro-Newton micro-thrusters are arrayed in a square pyramidal structure. The pyramid is of shallow obliquity, with no more than 20° offset from the spacecraft face. This small angular offset is sufficient to provide thrust vector control (TVC) for the thruster.

Posted in: Briefs, Aerospace, Mechanical Components, Nanotechnology, Propulsion, Semiconductors & ICs


Sampling Mechanism for a Comet Sample Return Mission

A similar sampling mechanism could be deployed in dangerous situations on Earth. Goddard Space Flight Center, Greenbelt, Maryland Sample return missions have the ability to vastly increase scientific understanding of the origin, history, current status, and resource potential of solar system objects including asteroids, comets, Mars, and the Moon. However, to make further progress in understanding such bodies, detailed analyses of samples are needed from as many bodies as possible. A standoff sample collection system concept has been developed that would quickly obtain a sample from environments as varied as comets, asteroids, and permanently shadowed craters on the Moon, using vehicles ranging from traditional planetary spacecraft to platforms such as hovering rotorcraft or balloons on Mars, Venus, or Titan. The depth of penetration for this harpoon- based hollow collector was experimentally determined to be proportional to the momentum of the penetrator in agreement with earlier work on the penetration of solid projectiles. A release mechanism for the internal, removable sample cartridge was tested, as was an automatic closure system for the sample canister.

Posted in: Briefs, TSP, Aerospace, Data Acquisition, Mechanical Components, Machinery & Automation, Monitoring, Test facilities, Spacecraft


Products of Tomorrow: April 2015

The technologies NASA develops don’t just blast off into space. They also improve our lives here on Earth. Life-saving search-and-rescue tools, implantable medical devices, advances in commercial aircraft safety, increased accuracy in weather forecasting, and the miniature cameras in our cellphones are just some of the examples of NASA-developed technology used in products today. This column presents technologies that have applications in commercial areas, possibly creating the products of tomorrow. If you are interested in licensing the technologies described here, use the contact information provided. To learn about more available technologies, visit the NASA Technology Transfer Portal at

Posted in: Articles, Products, Consumer Product Manufacturing, Joining & Assembly, Mechanical Components, Optical Components, Optics, Connectors and terminals, Optics


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.