Mechanical & Fluid Systems

MEMS Gyroscope with Dual Interferometric Sense Elements

This sensing technique enables the use of a large proof mass with very low thermomechanical noise. John F. Kennedy Space Center, Florida High-performance inertial sensors, such as ring laser gyroscopes or fiber optic gyroscopes, have sufficient performance to enable “dead reckoning” navigation for adequate periods of time. Smaller microelectromechanical system (MEMS) inertial sensors, such as MEMS gyroscopes and MEMS accelerometers, typically have relevant performance characteristics that are 10 or 100 times worse than high-performance inertial sensors. As a result, these small MEMS inertial sensors must be aided by a global positioning system (GPS) if they are to be used for navigation.

Posted in: Briefs, TSP, MEMs, Sensors, Sensors and actuators


ACS Anchor Guide Stud and Caddy

Goddard Space Flight Center, Greenbelt, Maryland An alignment guide and a mounting interface for two of the repair tools on orbit during the Hubble Space Telescope Servicing Mission 4 (see were developed. This design can be installed in a timely manner, and was specifically developed for a worksite with minimal access and minimal visual line-of-sight to the worksite. In addition, this technology was specifically designed for on-orbit work by astronauts, and can be used for any space-related work where an alignment aid or mounting interface is required.

Posted in: Briefs, TSP, Aerospace, Fastening, Joining & Assembly, Mechanical Components, Tools and equipment


Next-Generation, Lightweight Hard Upper Torso/Hatch Assembly

Lyndon B. Johnson Space Center, Houston, Texas The current MK-III carbon-graphite/epoxy Hard Upper Torso (HUT)/hatch assembly represented an 8.3 psi (≈57 kPa) technology demonstrator model of a zero pre-breathe suit. In this configuration, the MK-III suit weighed about 120 lb (≈54 kg). Since future lunar/planetary suits will need to operate under the influence of gravity, as well as operate at 4.3 psi (≈30 kPa), the weight of the suit had to be reduced to a minimum of 79 lb (≈36 kg) with the incorporation of lightweight structural materials and slight HUT/hatch assembly geometric redesign.

Posted in: Briefs, TSP, Aerospace, Mechanical Components, Lightweight materials, Protective clothing, Lightweighting


Elastic Deployable Composite Tubular Roll-Out Boom

Goddard Space Flight Center, Greenbelt, Maryland The objective of this work was to develop an innovative deployable boom/structure technology that is ultra-lightweight (<30-grams/meter potential), and has extremely compact stowage volume (>100:1 compaction ratio), broad scalability (no size limits envisioned), high deployed frequency, high deployed strength, good thermal/dimensional stability, reliable/immediate and repeatable controlled deployment, high stiffness maintained during the entire deployment sequence, affordability (simple, easily produced tubular structure, very low parts count, and proven tube manufacture provides low cost and rapid assembly), space environmental survivability, and broad mission applicability.

Posted in: Briefs, TSP, Aerospace, Mechanical Components, Composite materials, Lightweighting


Reduced-Speed Duplex-Ring Seal

This configuration seals fluid flow and pressure at a significant increase in machine shaft speed. John H. Glenn Research Center, Cleveland, Ohio Ring seals are used in rotating union applications where a fluid flow or hydraulic pressure signal is transferred from a static reference frame to a rotating component, such as a shaft, for the purpose of providing lubrication and/or a hydraulic signal to a component(s) in a rotating frame of reference. Ring seals are used in physically compact configurations.

Posted in: Briefs, TSP, Mechanical Components, Seals and gaskets


Performing Launch Depressurization Test on Large Test Articles Using Two Vacuum Chambers in Tandem

NASA’s Jet Propulsion Laboratory, Pasadena, California Two vacuum chambers were used in tandem to perform a launch depressurization test. The test article was mounted in a 10-ft (≈3 m) Vertical Vacuum Chamber (Chamber 248-10). The 25-ft (≈7.6-m) Space Simulator (Chamber 150-25) was rough-pumped and used for ullage.

Posted in: Briefs, TSP, Aerospace, Mechanical Components, Test procedures


Pyramid Micro-Electrofluidic-Spray Propulsion Thruster with Integrated Attitude and Thrust Vector Control

NASA’s Jet Propulsion Laboratory, Pasadena, California A micro-electrofluidic-spray propulsion (MEP) system was built on a micro scale, in which arrays of hundreds of nano-thrusters are etched on silicon wafers like ICs, only a centimeter on a side. Many dozens of these thruster chips can be arrayed to form a macro-thruster of finite and significant thrust. Approximately 300 centimeter-square, 100-micro-Newton micro-thrusters are arrayed in a square pyramidal structure. The pyramid is of shallow obliquity, with no more than 20° offset from the spacecraft face. This small angular offset is sufficient to provide thrust vector control (TVC) for the thruster.

Posted in: Briefs, Aerospace, Mechanical Components, Nanotechnology, Propulsion, Semiconductors & ICs


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.