Mechanical & Fluid Systems

Variable-Sweep-Wing Aircraft Configuration

There are significant improvements in structural, aerodynamic, and energy efficiency. Ames Research Center, Moffett Field, California Efficient aircraft designs are increasingly desired in order to support the continued growth of the air transportation industry. Continued expansion of this vital mode of transportation is threatened due to concerns over ever-increasing emissions, noise, and the demand for fuel. Current airport runway, ramp, and terminal facilities are increasingly constrained by encroaching growth and neighborhood environmental issues. The challenges associated with ever-increasing demand for air travel will require the development of aircraft that can fly efficiently over wide speed ranges, minimize their environmental impacts, offer the potential for sizing and growth relative to market demand, and make efficient use of constrained airport and airspace resources.

Posted in: Articles, Briefs, Aeronautics, Aerospace, Aviation, Energy Efficiency, Manufacturing & Prototyping, Mechanical Components, Fuselages, Wings, Product development, Aircraft


NASA Tests Revolutionary Shape-Changing Aircraft Flap

NASA's green aviation project is one step closer to developing technology that could make future airliners quieter and more fuel‑efficient with the successful flight test of a wing surface that can change shape in flight. Researchers replaced an airplane’s conventional aluminum flaps with advanced, shape‑changing assemblies that form seamless bendable and twistable surfaces. Flight testing will determine whether flexible trailing‑edge wing flaps are a viable approach to improve aerodynamic efficiency and reduce noise generated during takeoffs and landings.

Posted in: News, Aerospace, Aviation, Mechanical Components


Titan Lake and Shore Sampler

The device is suitable for cryogenic dispensing of fluids, and for cryocoolers. NASA’s Jet Propulsion Laboratory, Pasadena, California A lake and shore sampling and sample distribution system was developed for a Titan lake environment (93.7 K, in liquid hydrocarbons). The Titan Lake and Shore Sampler (TLASS) would enable the chemical analysis of hydrocarbon lake samples via a Dual Rectilinear Ion and Orbitrap Mass Spectrometer and Nuclear Magnetic Resonance (NMR) Spectrometry.

Posted in: Briefs, TSP, Electronics & Computers, Information Sciences, Mechanical Components, Data Acquisition, Analysis methodologies, Spacecraft


Hydraulic High-Pressure Valve Controller Using the In Situ Pressure Difference

This technology is applicable to any system or device requiring high-pressure-differential valves. Various applications exist where high-pressure valves are required, but the problem for control of such valves lies in that they have to move against a strong pressure differential that may require significant force, energy, and large actuators. The solution to this problem is to take advantage of the in situ pressure differential to operate valves by opening small valves to change the pressure on either chamber of a hydraulic cylinder that is connected to the valve’s moving element.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Parts, Hydraulic systems


Safely Testing Parachute-Based Extraction Systems

Functional testing can be conducted under a wide range of performance parameters. Lyndon B. Johnson Space Center, Houston, Texas This invention relates to the safe, reliable, and repeatable testing under external load of the Extraction Force Transfer Coupling (EFTC) currently used in the extraction of airdrop platforms from both the C-17 and C-130 cargo transport aircraft. The invention enables functional testing of the EFTC at various loading angles and load magnitudes, as well as in different hardware configurations, to verify its performance in both nominal and off-nominal extraction scenarios.

Posted in: Briefs, TSP, Mechanical Components, Safety testing and procedures, Freighter aircraft


Hybrid Gear

This gear can transfer the same level of torque as an all-metallic gear, but with lower weight and modified vibration/noise. John H. Glenn Research Center, Cleveland, Ohio Reducing stiffness-induced gear noise and making lighter-weight gearing components would be a substantial advantage over the current all-metallic configuration. The use of composites to join metallic hubs to the metallic gear rim would reduce manufacturing costs of large aerospace gears, with weight reductions and modified noise/vibration response. All-metallic gearing components do little to dampen the gear meshing noise induced by the nonlinear tooth stiffness during the meshing process. With a composite web, this metallic path for vibration and noise transfer would be eliminated and alter the resultant transmitted noise/vibration.

Posted in: Briefs, TSP, Mechanical Components, Composite materials, Noise, Vibration, Parts


Pulley Mechanism Improves Hand Function After Surgery

Engineers at Oregon State University have developed and successfully demonstrated a simple pulley mechanism to improve hand function after surgery. The device is one of the first instruments ever created that could improve the transmission of mechanical forces and movement while implanted inside the body.

Posted in: News, Mechanical Components, Medical, Rehabilitation & Physical Therapy, Motion Control


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.