Mechanical & Fluid Systems

Pneumatic Accelerator for Launching a Spacecraft

A report proposes the development of a ground-based launch-assist apparatus that would accelerate a spacecraft to a speed of about 270 m/s. The apparatus would include a track along which the spacecraft would ride on a sled coupled to a large piston driven by compressed air along a tube (more precisely, a concrete tunnel lined with stainless-steel sheet) below the track. The connection between the sled and the piston would be made via a coupling plate that would slide along a slot on top of the tube. The slot would seal after passage of the coupling plate. As described thus far, the apparatus could be characterized as a modern, high-acceleration, high-speed version of pneumatic drives with slot connections to rail cars that were used in Europe during the 1840s.

Posted in: Mechanics, Briefs, TSP

Read More >>

High-Temperature Switched-Reluctance Electric Motor

Motors like this one would be incorporated into gas turbines as starter/generators. An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 °F (Å540 °C). The motor (see figure) is an experimental prototype of starter-motor/ generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling.

Posted in: Mechanics, Briefs

Read More >>

Ice-Melting Probe Using Steam and Jets of Hot Water

This probe would overcome some of the deficiencies of prior ice-melting probes. An improved probe has been proposed for burrowing vertically into ice for scientific exploration of polar icecaps, glaciers, and the like. The predecessor of the improved probe is a Philbert probe, which contains an electric heater to melt the ice in contact with it and thereby make it descend through the ice under its own weight. A Philbert probe also contains a mechanism from which the wires for the electric heater and any sensors in the probe are paid out behind the probe; these wires become sealed into the overlying ice as the probe descends. The two major drawbacks of a Philbert probe are that (1) it tends not to go straight down and (2) a plug of dust, sand, rock, and/or other debris tends to build up in the meltwater ahead of the probe, eventually becoming large enough to halt the descent by interrupting the heat-transfer interface between the vehicle nose and the ice. The improved probe is designed to eliminate these drawbacks.

Posted in: Mechanics, Briefs, TSP

Read More >>

Lightweight, Low-Backlash Robot Wrist With Epicyclic Drive

Several design features contribute synergistically to versatility and efficiency. A unique lightweight wrist with three degrees of rotational freedom has been developed as a prototype of wrists for future anthropomorphic robots that would perform a variety of tasks on Earth and in outer space. The three degrees of freedom (two rolling, one bending) intersect at the center of the wrist. Included in the wrist is a power transmission with an epicyclic ring-gear configuration that enables efficient packaging and provides a wide internal passage through the center of rotation for routing of wires and drive cables. The power transmission combines lowbacklash planetary gearing and a tripleinput differential with a triple-loadpath, cable-driven output stage that generates minimal radial bearing loads and no thrust (that is, axial) bearing loads.

Posted in: Mechanics, Briefs

Read More >>

Program Computes Pointing Corrections for a Radiotelescope

TLC is a computer program that determines corrections for radiotelescopepointing errors associated with tilts and elastic deformations. These errors occur because for rotation in azimuth, a radiotelescope is mounted on wheels that move on a circular track that deviates from perfect flatness. TLC processes radiotelescope field data through smoothing, filtering, segment-fitting, trend-removal, Fourier-transform, and high-passfiltering algorithms to generate a lookup table that contains the pointing corrections. The field data in question are readouts from four inclinometers, the relative positions of the inclinometers, and readouts from an azimuth-angle encoder. Written in the Matlab software system, TLC is a user-friendly program that provides a graphical user interface that enables even an unfamiliar user to proceed, step by step, to the final result.

Posted in: Mechanics, Briefs, TSP

Read More >>

Improved Lifetime for Stirling Cryogenic Coolers

Core-technology advances extend maintenance-free operating life of coolers to more than 50,000 hours. A Stirling cooler is a mechanical system that approximates the ideal gas cycle. Often associated with airborne or portable cooling applications that require compact design and low input power, Stirling coolers are suitable for such applications because of their high efficiency. Compared to Gifford-McMahon and Joule-Thomson cycles, Stirling offers more than twice the cooling performance in the capacity range from 1-100 W. The coolers have a variety of military and commercial applications in infrared receivers and thermal imaging equipment.

Posted in: Briefs

Read More >>

Improved Piezoelectrically Actuated Microvalve

The improvements are intended to ensure less leakage and true normally-closed operation. Figure 1. The Previous Version of the Valve, like the present version, was opened by applying a voltage that caused the piezoelectric actuator to contract slightly.Efforts are underway to implement an improved design of the device described in “Normally Closed, Piezoelectrically Actuated Microvalve” (NPO-20782), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 39. To recapitulate: This valve is being developed as a prototype of valves in microfluidic systems and other microelectromechanical systems (MEMS). The version of the valve reported in the cited previous article (see Figure 1) included a base (which contained a seat, an inlet, and an outlet), a diaphragm, and an actuator. With the exception of the actuator, the parts were micromachined from silicon. The actuator consisted of a stack of piezoelectric disks in a rigid housing. To make the diaphragm apply a large sealing force on the inlet and outlet, the piezoelectric stack was compressed into a slightly contracted condition during assembly of the valve. Application of a voltage across the stack caused the stack to contract into an even more compressed condition, lifting the diaphragm away from the seat, thereby creating a narrow channel between the inlet and outlet.

Posted in: Mechanics, Briefs, TSP

Read More >>