Mechanical & Fluid Systems

Modular Rake of Pitot Probes

Individual probes can be replaced more easily than was possible before. The figure presents selected views of a modular rake of 17 pitot probes for measuring both transient and steady-state pressures in a supersonic wind tunnel. In addition to pitot tubes visible in the figure, the probe modules contain (1) high-frequency dynamic-pressure transducers connected through wires to remote monitoring circuitry and (2) flow passages that lead to tubes that, in turn, lead to remote steady-state pressure transducers.

Posted in: Mechanics, Briefs, TSP

Read More >>

Safer Roadside Crash Walls Would Limit Deceleration

These walls would protect both vehicle occupants and bystanders. The figure depicts the aspects of a proposed deceleration-limiting design for crash walls at the sides of racetracks and highways. The proposal is intended to overcome the dis- advantages of both rigid barriers and kinetic-energy-absorbing barriers of prior design. Rigid barriers can keep high-speed crashing motor vehicles from leaving roadways and thereby prevent injury to nearby persons and objects, but they can also subject the occupants of the vehicles to deceleration levels high enough to cause injury or death. Kinetic-energy-absorbing barriers of prior design reduce deceleration levels somewhat, but are not designed to soften impacts optimally; moreover, some of them allow debris to bounce back onto roadways or onto roadside areas, and, in cases of glancingly incident vehicles, some of them can trap the vehicles in such a manner as to cause more injury than would occur if the vehicles were allowed to skid along the rigid barriers. The proposed crash walls would (1) allow tangentially impacting vehicles to continue sliding along the racetrack without catching them, (2) catch directly impacting vehicles to prevent them from injuring nearby persons and objects, and (3) absorb kinetic energy in a more nearly optimum way to limit decelerations to levels that human occupants could survive.

Posted in: Mechanics, Briefs, TSP

Read More >>

Bearing-Seal System for Safe Motion Transfer in Deep Submersible Pressure Vessels

Elastomeric bearings permit leak-free transfer of rotary motion through the hull. Designers of deep submersibles are reluctant to use conventional shafts and seals to penetrate the hulls of deep sub- mersible, pressure vessels fearing seal failure under extreme pressures. The unique design of this patented system, designated LAMIFLEX®, incorporates elastomeric bearings in order to achieve an absolute hermetic seal and permit leak-free transfer of rotary motion up to at least 15 degrees through the hull of these highly pressurized vessels. External functions, such as control surface deflection, can be driven internally with inherent safety and backup. There are no sliding surfaces (packings, lip, or face seals) that could fail. It also exhibits a smooth spring-like reaction and limited shaft movement without friction. The new designs have been implemented and tested at pressures of 10,000 psi for more than a million cycles at ±15 degrees with no leakage.

Posted in: Mechanics, Briefs

Read More >>

Larger-Stroke Piezoelectrically Actuated Microvalve

Liquids carrying small particles could be handled. A proposed normally-closed microvalve would contain a piezoelectric bending actuator instead of a piezoelectric linear actuator like that of the microvalve described in the preceding article. Whereas the stroke of the linear actuator of the preceding article would be limited to ≈6 μm, the stroke of the proposed bending actuator would lie in the approximate range of 10 to 15 μm — large enough to enable the microvalve to handle a variety of liquids containing suspended particles having sizes up to 10 μm. Such particulate-laden liquids occur in a variety of microfluidic systems, one example being a system that sorts cells or large biomolecules for analysis.

Posted in: Mechanics, Briefs, TSP

Read More >>

Piezoelectrically Actuated Microvalve for Liquid Effluents

Power consumption and size would be reduced. Modifications have been proposed to effect further improvement of the device described in “Improved Piezo- electrically Actuated Microvalve” (NPO-30158), NASA Tech Briefs, Vol. 26, No. 1 (January 2002), page 29. To recapitulate: What is being developed is a prototype of valves for microfluidic systems and other microelectromechanical systems (MEMS). The version of the valve reported in the cited previous article included a base (which contained a seat, an inlet, and an outlet), a diaphragm, and a linear actuator. With the exception of the actuator, the parts were micromachined from silicon. The linear actuator consisted of a stack of piezoelectric disks in a rigid housing. To make the diaphragm apply a large sealing force on the inlet and outlet, the piezoelectric stack was compressed into a slightly contracted condition during assembly of the valve. Application of a voltage across the stack caused the stack to contract into an even more compressed condition, lifting the diaphragm away from the seat, thereby creating a narrow channel between the inlet and outlet. The positions of the inlet and outlet, relative to the diaphragm and seat, were such that the inlet flow and pressure contributed to sealing and thus to a desired normallyclosed mode of operation.

Posted in: Mechanics, Briefs, TSP

Read More >>

Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost

This design includes several improvements over prior designs. A control valve that can throttle high-pressure cryogenic fluid embodies several design features that distinguish it over conventional valves designed for similar applications. Field and design engineers worked together to create a valve that would simplify installation, trim changes, and maintenance, thus reducing overall cost. The seals and plug stem packing were designed to perform optimally in cryogenic temperature ranges. Unlike conventional high-pressure cryogenic valves, the trim size can be changed independent of the body.

Posted in: Mechanics, Briefs

Read More >>

Flight-Test Evaluation of Flutter-Prediction Methods

Experiments have demonstrated the accuracy of predictions of instability. The flight-test community routinely spends considerable time and money to determine a range of flight conditions, called a flight envelope, within which an aircraft is safe to fly. The cost of determining a flight envelope could be greatly reduced if there were a method of safely and accurately predicting the speed associated with the onset of an instability called flutter.

Posted in: Briefs, TSP

Read More >>