Mechanical Components

Buckling and Fracture Analysis of Composite Skin-Stringer Panel Using VCCT and FEA Software

New finite element analysis simulation capabilities predict crack propagation in composites. In the continuing goal of developing products with better performance at a lower cost, composites are becoming increasingly prevalent in the aerospace industry. Composite structures offer exceptional performance due to their high strength at a low weight. Additionally, one large integrated composite component can replace ten or more traditional metal parts, dramatically reducing manufacturing costs. For the first time in the aviation industry, companies are beginning to use composites for primary load-bearing components. Boeing announced that the new 787 aircraft will be the first airliner to use composite materials in the majority of the aircraft construction.

Posted in: Mechanical Components, Briefs

Read More >>

Compact, Precise Inertial Rotation Sensors for Spacecraft

A document describes a concept for an inertial sensor for measuring the rotation of an inertially stable spacecraft around its center of gravity to within 100 microarc- seconds or possibly even higher precision. Whereas a current proposal for a spacecraft-rotation sensor of this accuracy requires one spacecraft dimension on the order of ten meters, a sensor according to this proposal could fit within a package smaller than 1 meter and would have less than a tenth of the mass. According to the concept, an inertial mass and an apparatus for monitoring the mass would be placed at some known distance from the center of gravity so that any rotation of the spacecraft would cause relative motion between the mass and the spacecraft. The relative motion would be measured and, once the displacement of the mass exceeded a prescribed range, a precisely monitored restoring force would be applied to return the mass to a predetermined position. Measurements of the relative motion and restoring force would provide information on changes in the attitude of the spacecraft. A history of relative- motion and restoring-force measurements could be kept, enabling determination of the cumulative change in attitude during the observation time.

Posted in: Mechanical Components, Briefs, TSP

Read More >>

Lunar Constellation of Frozen Elliptical Inclined Orbits

A document discusses the design of orbits of spacecraft for relaying communications between Earth stations and robotic and human explorers in craters in one of the polar regions on the Moon. In simplest terms, the basic problem is to design a constellation of orbits to provide continuous and preferably redundant communication coverage of one of the poles with a minimal number of spacecraft and little or no controlled maneuvering of the spacecraft to maintain the orbits. The design method involves the use of analytical techniques for initial selection of orbits, followed by a numerical procedure for tuning the coverage of the constellation to obtain a design. In an example application, the method leads to a constellation of three spacecraft having elliptical, inclined orbits, the apoapsides of which would remain in the hemisphere (North or South) containing the pole of interest. The orbits would be stable and would maintain the required spacecraft formation for at least 10 years, without need for controlled maneuvering if gravitation is the only force considered to affect the orbits. A small amount of controlled maneuvering would be needed to counteract effects of solar-radiation pressure and other perturbations.

Posted in: Mechanical Components, Briefs

Read More >>

Stochastic Representation of Chaos Using Terminal Attractors

Fictitious control forces stabilize what would otherwise be unstable computed trajectories. A nonlinear version of the Liouville equation based on terminal attractors is part of a mathematical formalism for describing postinstability motions of dynamical systems characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism can be applied to both conservative systems (e.g., multibody systems in celestial mechanics) and dissipative systems (e.g., viscous fluids).

Posted in: Mechanical Components, Briefs

Read More >>

Using Plates To Represent Fillets in Finite-Element Modeling

Structural deflections are approximated by use of simplified computational submodels of fillets A method that involves the use of fictitious plate elements denoted bridge plates has been developed for representing the stiffnesses of fillets in finiteelement calculations of deflections, stresses, and strains in structures. In the absence of this method, it would be necessary to either neglect the effects of fillets to minimize the computational burden or else incur a large computational burden by using complex computational models to represent the fillets accurately. In effect, the bridge plates of the present method are reduced-order models of fillets that do not yield accurate stresses within fillets but do make it possible to accurately calculate the dynamic characteristics of the structure and to approximate the effects of fillets on stresses and strains elsewhere in a structure that contains the fillets. Such approximations are accurate enough for final modal analysis and preliminary stress analyses.

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>

Two High-Temperature Foil Journal Bearings

These are prototypes of foil bearings for aircraft gas turbine engines. An enlarged, high-temperature -compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. At 150 mm in diameter, this is the largest foil bearing known to date. This bearing is a scaled-up version of a patented 100-mm-diameter foil bearing, augmented by coating the foil with a proprietary high-temperature material. In a companion development, a foil bearing as described above has been combined with a 150-mm-diameter active magnetic bearing to make a hybrid foil magnetic bearing.

Posted in: Mechanical Components, Briefs, TSP

Read More >>

Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

This engine would operate with high fuel efficiency and generate little pollution. A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel.

Posted in: Mechanical Components, Briefs, TSP

Read More >>