Mechanical Components

Piezoelectrically Initiated Pyrotechnic Igniter

This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments.

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>

Dual-Compartment Inflatable Suitlock

There is a need for an improvement over current NASA Extravehicular Activity (EVA) technology. The technology must allow the capacity for quicker, more efficient egress/ingress, allow for “shirtsleeve” suit maintenance, be compact in transport, and be applicable to environments ranging from planetary surface (partial-g) to orbital or deep space zero-g environments. The technology must also be resistant to dust and other foreign contaminants that may be present on or around a planetary surface. The technology should be portable, and be capable of docking with a variety of habitats, ports, stations, vehicles, and other pressurized modules.

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>

Spherical Plain Bearing

AST Bearings’ website features a variety of white papers covering a range of spherical plain bearings, free of charge. These white papers include spherical plain bearings requiring lubrication (steel-on-steel) and maintenance-free spherical plain bearings, which are broken down into categories according to the sliding contact surfaces: steel-on-PTFE composite material, steel-on- PTFE fabric and steel-on-copper alloy. The white papers offer valuable and detailed information, such as design characteristics, materials, applications, temperatures and more for every product.

Posted in: Mechanical Components, White Papers

Read More >>

A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars)

A reusable lander, hopper, sample-return col lector cargo system (all-in-one) is proposed for Mars. Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Arch i tecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample return missions, as a reusable lander, ascend/descend vehicle, refuel able hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments.

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>

Optimized Radiator Geometries for Hot Lunar Thermal Environments

The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft’s vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed ≈325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided.

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>

Lubricant Selection: What Every Design Engineer Needs to Know

Simply stated, lubrication refers to the age-old science of friction reduction. People have been using lubricants for thousands of years, experimenting with waxes and oils from vegetables, fish, and animals to move heavy materials with equipment designed to gain mechanical advantage. In more recent years, the discovery of petroleum oil in the 1800s ushered in a new era of lubrication developments as people learned how to refine this oil and use it for a variety of purposes. Machinery could now be developed to operate faster and under heavier loads by using lubricants to create a barrier that eliminates friction and metalon- metal contact.

Posted in: Materials, Mechanical Components, Machinery & Automation, White Papers

Read More >>

Lexan Linear Shaped Charge Holder With Magnets and Backing Plate

A method was developed for cutting a fabric structural member in an inflatable module, without damaging the internal structure of the module, using linear shaped charge. Lexan and magnets are used in a charge holder to precisely position the linear shaped charge over the desired cut area. Two types of charge holders have been designed, each with its own backing plate. One holder cuts fabric straps in the vertical configuration, and the other charge holder cuts fabric straps in the horizontal configuration.

Posted in: Mechanics, Mechanical Components, Briefs

Read More >>