Mechanical & Fluid Systems

Blended Buffet-Load-Alleviation System for Fighter Airplane

Reductions in buffet loads translate to longer fatigue lives. The capability of modern fighter airplanes to sustain flight at high angles of attack and/or moderate angles of sideslip often results in immersion of part of such an airplane in unsteady, separated, vortical flow emanating from its forebody or wings. The flows from these surfaces become turbulent and separated during flight under these conditions. These flows contain significant levels of energy over a frequency band coincident with that of low-order structural vibration modes of wings, fins, and control surfaces. The unsteady pressures applied to these lifting surfaces as a result of the turbulent flows are commonly denoted buffet loads, and the resulting vibrations of the affected structures are known as buffeting. Prolonged exposure to buffet loads has resulted in fatigue of structures on several airplanes. Damage to airplanes caused by buffeting has led to redesigns of airplane structures and increased support costs for the United States Air Force and Navy as well as the armed forces of other countries. Time spent inspecting, repairing, and replacing structures adversely affects availability of aircraft for missions.

Posted in: Briefs, Mechanical Components, Mechanics

Read More >>

Split-Resonator, Integrated-Post Vibratory Microgyroscope

This design is better suited to mass production. An improved design for a capacitive sensing, rocking-mode vibratory microgyroscope is more amenable to mass production, relative to a prior design. Both the improved design and the prior design call for a central post that is part of a resonator that partly resembles a cloverleaf or a flower. The prior design is such that the post has to be fabricated as a separate piece, then bonded to the rest of the resonator in the correct position and orientation. The improved design provides for fabrication of the post as an integral part of the resonator and, in so doing, makes it possible to produce a waferful of microgyroscopes, without need to fabricate, position, and attach posts.

Posted in: Briefs, TSP, Mechanical Components, Mechanics

Read More >>

Fast Laser Shutters With Low Vibratory Disturbances

Opposing cantilevered piezoelectric bending actuators balance each other to minimize vibration. The figure shows a prototype vacuum-compatible, fast-acting, long-life shutter unit that generates very little vibratory disturbance during switching. This is one of a number of shutters designed to satisfy requirements specific to an experiment, to be performed aboard a spacecraft in flight, in which laser beams must be blocked rapidly and completely, without generating a vibratory disturbance large enough to adversely affect the power and frequency stability of the lasers. Commercial off-the-shelf laboratory shutter units — typically containing electromagnetcoil-driven mechanisms — were found not to satisfy the requirements because they are not vacuum-compatible, their actuators engage in uncompensated motions that generate significant vibrations, and their operational lifetimes are too short. Going beyond the initial outerspace application, the present vacuum compatible, fast-acting, long-life shutter units could also be used in terrestrial settings in which there are requirements for their special characteristics.

Posted in: Briefs, TSP, Mechanical Components, Mechanics

Read More >>

Powder-Collection System for Ultrasonic/Sonic Drill/Corer

Powder is blown from the drill/rock interface to sampling locations. A system for collecting samples of powdered rock has been devised for use in conjunction with an ultrasonic/sonic drill/corer (USDC) — a lightweight, lowpower apparatus designed to cut into, and acquire samples of, rock or other hard material for scientific analysis. The USDC was described in "Ultrasonic/Sonic Drill/Corers With Integrated Sensors" (), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. To recapitulate: The USDC includes a drill bit, corer, or other tool bit, in which ultrasonic and sonic vibrations are excited by an electronically driven piezoelectric actuator. The USDC advances into the rock or other material of interest by means of a hammering action and a resulting chiseling action at the tip of the tool bit. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, a negligible amount of axial force is needed to make the USDC advance into the material. Also unlike a conventional twist drill, the USDC operates without need for torsional restraint, lubricant, or a sharp bit.

Posted in: Briefs, TSP, Mechanical Components, Mechanics

Read More >>

Semiautomated, Reproducible Batch Processing of Soy

Processing conditions are selectable and are consistent from batch to batch. A computer-controlled apparatus processes batches of soybeans into one or more of a variety of food products, under conditions that can be chosen by the user and reproduced from batch to batch. Examples of products include soy milk, tofu, okara (an insoluble protein and fiber byproduct of soy milk), and whey. Most processing steps take place without intervention by the user. This apparatus was developed for use in research on processing of soy. It is also a prototype of other soy-processing apparatuses for research, industrial, and home use.

Posted in: Briefs, Mechanical Components, Mechanics

Read More >>

Thermal and Compressed-Air Storage System Provides Alternative to UPS Batteries

Three mature energy-storage technologies are combined in a new system to replace lead-acid batteries. Virtually all businesses and industries are vulnerable to electric power disturbances such as outages, sags, swells, and harmonics. These problems are less of an issue for data centers, protected behind their walls of Uninterruptible Power Supply (UPS) systems. But the typical battery-backed UPS is too fragile for use in less protected environments. UPS batteries must be maintained in a narrow temperature range and fail prematurely when subjected to a steady diet of step loads and motor drives. About six years ago, flywheel-based UPS products became commercially available. These devices store energy as rotational inertia, and are rugged enough to survive on the factory floor. However, flywheels have relatively short ride-through energy and are best-suited for use in locations with backup generators.

Posted in: Briefs, Mechanical Components, Mechanics

Read More >>

Carbon-Fiber Brush Heat Exchangers

High thermal conductance between uneven surfaces could be achieved with low clamping force. Velvetlike and brushlike pads of carbon fibers have been proposed for use as mechanically compliant, highly thermally conductive interfaces for transferring heat. A pad of this type would be formed by attaching short carbon fibers to either or both of two objects that one desires to place in thermal contact with each other. The purpose of using a thermal-contact pad of this or any other type is to reduce the thermal resistance of an interface between a heat source (e.g., a module that contains electronic circuitry) and a heat sink (e.g., a common finned heat sink).

Posted in: Briefs, Mechanical Components, Mechanics

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.