Mechanical & Fluid Systems

Simple, Compact, Safe Impact Tester

Cushioned impact decelerations up to hundreds of normal Earth gravitation are easily produced. An apparatus has been designed and built for testing the effects, on moderatesized objects, of cushioned decelerations having magnitudes ranging up to several hundred g [where g  = normal Earth gravitational acceleration ( ≈9.8 m/s2)]. The apparatus was originally intended for use in assessing the ability of scientific instruments in spacecraft to withstand cushioned impacts of landings on remote planets. Although such landings can have impact velocities of 20 to 50 m/s, the decelerations must not exceed a few hundred g. This requires the deceleration to occur over a distance of as much as 50 cm in a time of tens of milliseconds. This combination of conditions is surprisingly difficult to simulate on the ground. The apparatus could also be used for general impact testing.

Posted in: Briefs, TSP

Read More >>

Six-Message Electromechanical Display System

This system would overcome the three-message limit of prior such systems. A proposed electromechanical display system would be capable of presenting as many as six distinct messages. This system would be a more capable and more complex successor to the proposed system reported in “Four-Message Electromechanical Display System” (MFS-31368), NASA Tech Briefs, Vol. 24, No. 4 (April 2000), page 32. In contrast to the now-proposed six-message system and the previously proposed four-message system, a typical conventional electromechanical display system is limited to three messages.

Posted in: Briefs, TSP

Read More >>

Compact, Recuperated, Binary-Fluid Rankine-Cycle Engine

The primary advantages of this engine are compactness and relatively high energy-conversion efficiency. A Rankine-cycle engine that contains a binary working fluid (ammonia + water) and a recuperative heat exchanger has been built and tested. This engine is a prototype of "bottoming"-cycle engines that would be used to extract additional useful power from the exhaust heat of gas turbine engines. Its advantages are well suited to vehicles, where volume and weight are important constraints.

Posted in: Machinery & Automation, Briefs

Read More >>

Variable Frequency Drives For More Efficient Manufacturing Operations

VFDs provide adjustable motor speed that reduces energy consumption of fans. Energy savings is one of the key ingredients in reducing costs for any manufacturing operation. A simple, but very effective, way to save energy is by making fans run more efficiently. Almost every manufacturing application uses fans, and variable frequency drives (VFDs) provide the adjustable motor speed that can actually reduce energy consumption in fans. This concept is demonstrated in the following example where VFDs are used in tandem with industrial robots for paint spray booth applications.

Posted in: Briefs

Read More >>

Stable, Soft-Opening/Soft-Closing Pressure-Relief Valves

The risk of ignition in systems containing oxygen is reduced. Improved pressure-relief valves have been developed for systems that contain gases and liquids in a variety of pneumatic, hydraulic, and cryogenic applications. These valves could prove especially beneficial in both cryogenic and noncryogenic systems that contain oxygen. The improved valves are designed to suppress instabilities that shorten operational lifetimes and create hazards in the operation of older pressure-relief valves.

Posted in: Briefs

Read More >>

Rotating Reverse-Osmosis for Water Purification

Rotating Reverse-Osmosis for Water Purification This device would resist fouling. A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse-osmosis membranes are vulnerable to concentration polarization — a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water.

Posted in: Briefs

Read More >>

Inlet Housing for a Partial-Admission Turbine

Inlet Housing for a Partial-Admission Turbine The housing is shaped to smooth the inlet flow. An inlet housing for a partial-admission turbine has been designed to cause the inlet airflow to make a smooth transition from an open circular inlet to an inlet slot. The smooth flow is required for purposes of measuring inlet flow characteristics and maximizing the efficiency of the turbine.

Posted in: Briefs

Read More >>