Mechanical & Fluid Systems

Update on Controlling Herds of Cooperative Robots

A document presents further information on the subject matter of “Controlling Herds of Cooperative Robots” (NPO-40723), NASA Tech Briefs, Vol. 30, No. 4 (April 2006), page 81. To recapitulate: A methodology for controlling a herd of cooperative and autonomous mobile robots exploring the surface of a remote planet or moon (specifically, Titan or Titan-like) is undergoing development. The proposed configuration of mobile robots consists of a blimp and a herd of surface sondes. The blimp is the leader of the herd, and it commands the other robots to move to locations on the surface or below the surface to conduct science operations. Once a target is chosen, the sondes cooperatively aim sensors at the target to maximize scientific return. This hierarchical and cooperative behavior is necessary in the face of such unpredictable factors as terrain obstacles and uncertainties in the model of the environment.

Posted in: Briefs, TSP

Read More >>

Pseudo-Waypoint Guidance for Proximity Spacecraft Maneuvers

A paper describes algorithms for guidance and control (G&C) of a spacecraft maneuvering near a planet, moon, asteroid, comet, or other small astronomical body. The algorithms were developed following a model- predictive-control approach along with a convexification of the governing dynamical equations, control constraints, and trajectory and state constraints. The open-loop guidance problem is solved in advance or in real time by use of the pseudo-waypoint generation (PWG) method, which is a blend of classical waypoint and state-of-theart, real-time trajectory-generation methods. The PWG method includes satisfaction of required thruster silent times during maneuvers. Feedback control is implemented to track PWG trajectories in a manner that guarantees the resolvability of the open-loop-control problem, enabling updating of G&C in a provably robust, model-predictive manner. Thruster firing times and models of the gravitational field of the body are incorporated into discretized versions of the dynamical equations that are solved as part of an optimal-control problem to minimize consumption of fuel or energy. The optimal- control problem is cast as a linear matrix inequality (specifically a secondorder cone program), then solved through semi-definite-programming techniques in a computationally efficient manner that guarantees convergence and satisfaction of constraints.

Posted in: Briefs, TSP

Read More >>

Simple, Compact, Safe Impact Tester

Cushioned impact decelerations up to hundreds of normal Earth gravitation are easily produced. An apparatus has been designed and built for testing the effects, on moderatesized objects, of cushioned decelerations having magnitudes ranging up to several hundred g [where g  = normal Earth gravitational acceleration ( ≈9.8 m/s2)]. The apparatus was originally intended for use in assessing the ability of scientific instruments in spacecraft to withstand cushioned impacts of landings on remote planets. Although such landings can have impact velocities of 20 to 50 m/s, the decelerations must not exceed a few hundred g. This requires the deceleration to occur over a distance of as much as 50 cm in a time of tens of milliseconds. This combination of conditions is surprisingly difficult to simulate on the ground. The apparatus could also be used for general impact testing.

Posted in: Briefs, TSP

Read More >>

Six-Message Electromechanical Display System

This system would overcome the three-message limit of prior such systems. A proposed electromechanical display system would be capable of presenting as many as six distinct messages. This system would be a more capable and more complex successor to the proposed system reported in “Four-Message Electromechanical Display System” (MFS-31368), NASA Tech Briefs, Vol. 24, No. 4 (April 2000), page 32. In contrast to the now-proposed six-message system and the previously proposed four-message system, a typical conventional electromechanical display system is limited to three messages.

Posted in: Briefs, TSP

Read More >>

Compact, Recuperated, Binary-Fluid Rankine-Cycle Engine

The primary advantages of this engine are compactness and relatively high energy-conversion efficiency. A Rankine-cycle engine that contains a binary working fluid (ammonia + water) and a recuperative heat exchanger has been built and tested. This engine is a prototype of "bottoming"-cycle engines that would be used to extract additional useful power from the exhaust heat of gas turbine engines. Its advantages are well suited to vehicles, where volume and weight are important constraints.

Posted in: Machinery & Automation, Briefs

Read More >>

Variable Frequency Drives For More Efficient Manufacturing Operations

VFDs provide adjustable motor speed that reduces energy consumption of fans. Energy savings is one of the key ingredients in reducing costs for any manufacturing operation. A simple, but very effective, way to save energy is by making fans run more efficiently. Almost every manufacturing application uses fans, and variable frequency drives (VFDs) provide the adjustable motor speed that can actually reduce energy consumption in fans. This concept is demonstrated in the following example where VFDs are used in tandem with industrial robots for paint spray booth applications.

Posted in: Briefs

Read More >>

Stable, Soft-Opening/Soft-Closing Pressure-Relief Valves

The risk of ignition in systems containing oxygen is reduced. Improved pressure-relief valves have been developed for systems that contain gases and liquids in a variety of pneumatic, hydraulic, and cryogenic applications. These valves could prove especially beneficial in both cryogenic and noncryogenic systems that contain oxygen. The improved valves are designed to suppress instabilities that shorten operational lifetimes and create hazards in the operation of older pressure-relief valves.

Posted in: Briefs

Read More >>

White Papers

Multi-channel, Multi-board Coherency for SWaP-Constrained SIGINT and EW
Sponsored by curtiss wright
Piezo Engineering Tutorial
Sponsored by aerotech
How to Maximize Temperature Measurement Accuracy
Sponsored by VTI Instruments
Automated Inspection Lowers Solar Cell Costs
Sponsored by Teledyne DALSA
The Road to Lightweight Vehicles
Sponsored by HP
Fundamentals of Vector Network Analysis Primer
Sponsored by Rohde and Schwarz

White Papers Sponsored By: