Mechanical Components

Blade-Pitch Control for Quieting Tilt-Rotor Aircraft

Actively induced harmonic blade-pitch oscillations reduce BVI noise. A method of reducing the noise generated by a tilt-rotor aircraft during descent involves active control of the blade pitch of the rotors. This method is related to prior such noise- reduction methods, of a type denoted generally as higher-harmonic control (HHC), in which the blade pitch is made to oscillate at a harmonic of the frequency of rotation of the rotor.

Posted in: Mechanical Components, Briefs, TSP

Read More >>

Farm Equipment Manufacturer Shortens Design Cycle With Analysis Software

The design of new tilling machinery is accelerated using finite element analysis software. Humans have been using tools to make farming easier since the dawn of civilization. Since the turn of the 20th century, the growing use of mechanized power to till and sow fields has enabled farmers to realize incredible efficiency gains in the production of low-cost, safe, and nutritious foods and other crops, such as fibers. Today, bigger machines require less manpower to plant the crops that feed and clothe a swelling world population.

Posted in: Machinery & Automation, Mechanical Components, Briefs

Read More >>

Attitude Control for a Solar-Sail Spacecraft

A report describes the personal radiation protection system (PRPS), which has been invented for use on the International Space Station and other spacecraft. The PRPS comprises walls that can be erected inside spacecraft, where and when needed, to reduce the amount of radiation to which personnel are exposed. The basic structural modules of the PRPS are pairs of 1-in. (2.54-cm)-thick plates of high-density polyethylene equipped with fasteners. The plates of each module are assembled with a lap joint. The modules are denoted bricks. A report discusses the attitude-control system of a proposed spacecraft that would derive at least part of its propulsion from a solar sail. The spacecraft would include a bus module containing three or more reaction wheels, a boom attached at one end to the bus module and attached at its other end to a two-degree-of-freedom (DOF) gimbal at the nominal center of mass of a sail module. Each DOF of the gimbal could be independently locked against rotation or allowed to rotate freely. By using the reaction wheels to rotate the bus when at least one gimbal DOF was in the free state, the center of mass (CM) of the spacecraft could be shifted relative to the center of pressure (CP) on the solar sail. The resulting offset between the CM and CP would result in a solar torque, which could be used to change the attitude of the spacecraft. The report discusses numerous aspects of the dynamics and kinematics of the spacecraft, along with the relationships between these aspects and the designs of such attitude-control-system components as sensors, motors, brakes, clutches, and gimbals.

Posted in: Mechanical Components, Briefs, TSP

Read More >>

Liquid-Metal-Fed Pulsed Plasma Thrusters

A short document proposes liquid- metal- fed pulsed plasma thrusters for small spacecraft. The propellant liquid for such a thruster would be a low- melting- temperature metal that would be stored molten in an unpressurized, heated reservoir and would be pumped to the thruster by a magneto- hydrodynamic coupler. The liquid would enter the thruster via a metal tube inside an electrically insulating ceramic tube. A capacitor would be connected between the outlet of the metal tube and the outer electrode of the thruster. The pumping would cause a drop of liquid to form at the outlet, eventually growing large enough to make contact with the outer electrode. Contact would close the circuit through the capacitor, causing the capacitor to discharge through the drop. The capacitor would have been charged with enough energy that the discharge would vaporize, ionize, and electromagnetically accelerate the contents of the metal drop. The resulting plasma would be ejected at a speed of about 50 km/s. The vaporization of the drop would reopen the circuit through the capacitor, enabling recharging of the capacitor. As pumping continued, a new drop would grow and the process would repeat.

Posted in: Mechanical Components, Briefs, TSP

Read More >>

Ultrasonic Apparatus for Pulverizing Brittle Material

Characteristics include light weight, low preload, and low power demand. The figure depicts an apparatus that pulverizes brittle material by means of a combination of ultrasonic and sonic vibration, hammering, and abrasion. The basic design of the apparatus could be specialized to be a portable version for use by a geologist in collecting powdered rock samples for analysis in the field or in a laboratory. Alternatively, a larger benchtop version could be designed for milling and mixing of precursor powders for such purposes as synthesis of ceramic and other polycrystalline materials or preparing powder samples for x-ray diffraction or x-ray fluorescence measurements to determine crystalline structures and compositions. Among the most attractive characteristics of this apparatus are its light weight and the ability to function without need for a large preload or a large power supply: It has been estimated that a portable version could have a mass <0.5 kg, would consume less than 1 W·h of energy in milling a 1-cm 3 volume of rock, and could operate at a preload <10 N.

Posted in: Mechanical Components, Briefs, TSP

Read More >>

Centrifugal Adsorption System

Notable features include efficient collection of bioproducts and removal of bubbles. The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas- permeable, hydrophobic membrane.

Posted in: Machinery & Automation, Mechanical Components, Briefs

Read More >>

Demonstration of a Pyrotechnic Bolt-Retractor System

A paper describes a demonstration of the X-38 bolt-retractor system (BRS) on a spacecraft-simulating apparatus, called the Large Mobility Base, in NASA Flight Robotics Laboratory (FRL). The BRS design was proven safe by testing in NASA Pyrotechnic Shock Facility (PSF) before being demonstrated in the FRL. The paper describes the BRS, FRL, PSF, and interface hardware. Information on the bolt-retraction time and spacecraft-simulator acceleration, and an analysis of forces, are presented. The purpose of the demonstration was to show the capability of the FRL for testing of the use of pyrotechnics to separate stages of a spacecraft. Although a formal test was not performed because of schedule and budget constraints, the data in the report show that the BRS is a successful design concept and the FRL is suitable for future separation tests.

Posted in: Mechanical Components, Briefs

Read More >>