Mechanical & Fluid Systems

Two High-Temperature Foil Journal Bearings

These are prototypes of foil bearings for aircraft gas turbine engines.

An enlarged, high-temperature -compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. At 150 mm in diameter, this is the largest foil bearing known to date. This bearing is a scaled-up version of a patented 100-mm-diameter foil bearing, augmented by coating the foil with a proprietary high-temperature material. In a companion development, a foil bearing as described above has been combined with a 150-mm-diameter active magnetic bearing to make a hybrid foil magnetic bearing.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Bearings, Gas turbines

Using Plates To Represent Fillets in Finite-Element Modeling

Structural deflections are approximated by use of simplified computational submodels of fillets

A method that involves the use of fictitious plate elements denoted bridge plates has been developed for representing the stiffnesses of fillets in finiteelement calculations of deflections, stresses, and strains in structures. In the absence of this method, it would be necessary to either neglect the effects of fillets to minimize the computational burden or else incur a large computational burden by using complex computational models to represent the fillets accurately. In effect, the bridge plates of the present method are reduced-order models of fillets that do not yield accurate stresses within fillets but do make it possible to accurately calculate the dynamic characteristics of the structure and to approximate the effects of fillets on stresses and strains elsewhere in a structure that contains the fillets. Such approximations are accurate enough for final modal analysis and preliminary stress analyses.

Posted in: Briefs, Mechanical Components, Mechanics, Aircraft structures, Finite element analysis

Stochastic Representation of Chaos Using Terminal Attractors

Fictitious control forces stabilize what would otherwise be unstable computed trajectories.

A nonlinear version of the Liouville equation based on terminal attractors is part of a mathematical formalism for describing postinstability motions of dynamical systems characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism can be applied to both conservative systems (e.g., multibody systems in celestial mechanics) and dissipative systems (e.g., viscous fluids).

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Trajectory control, Mathematical models, Turbulence

Lunar Constellation of Frozen Elliptical Inclined Orbits

A document discusses the design of orbits of spacecraft for relaying communications between Earth stations and robotic and human explorers in craters in one of the polar regions on the Moon. In simplest terms, the basic problem is to design a constellation of orbits to provide continuous and preferably redundant communication coverage of one of the poles with a minimal number of spacecraft and little or no controlled maneuvering of the spacecraft to maintain the orbits. The design method involves the use of analytical techniques for initial selection of orbits, followed by a numerical procedure for tuning the coverage of the constellation to obtain a design. In an example application, the method leads to a constellation of three spacecraft having elliptical, inclined orbits, the apoapsides of which would remain in the hemisphere (North or South) containing the pole of interest. The orbits would be stable and would maintain the required spacecraft formation for at least 10 years, without need for controlled maneuvering if gravitation is the only force considered to affect the orbits. A small amount of controlled maneuvering would be needed to counteract effects of solar-radiation pressure and other perturbations.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Telecommunications, Spacecraft

Custom-Built Machining Centers Create Telescope Mirrors

Custom horizontal machining centers Mitsui Seiki USA Franklin Lakes, NJ 201-337-1300
Posted in: Application Briefs, Mechanical Components, Mirrors, Machining processes, Manufacturing equipment and machinery

Modification of a Limbed Robot to Favor Climbing

A kinematically simplified design affords several benefits.

The figure shows the LEMUR IIb, which is a modified version of the LEMUR II — the second generation of the Limbed Excursion Mechanical Utility Robot (LEMUR). Except as described below, the LEMUR IIb hardware is mostly the same as that of the LEMUR II. The IIb and II versions differ in their kinematic configurations and characteristics associated with their kinematic configurations. The differences are such that relative to the LEMUR II, the LEMUR IIb is simpler and is better suited to climbing on inclined surfaces.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Kinematics, Performance upgrades, Product development, Robotics

Controlling Herds of Cooperative Robots

A document poses, and suggests a program of research for answering, questions of how to achieve autonomous operation of herds of cooperative robots to be used in exploration and/or colonization of remote planets. In a typical scenario, a flock of mobile sensory robots would be deployed in a previously unexplored region, one of the robots would be designated the leader, and the leader would issue commands to move the robots to different locations or aim sensors at different targets to maximize scientific return. It would be necessary to provide for this hierarchical, cooperative behavior even in the face of such unpredictable factors as terrain obstacles. A potential-fields approach is proposed as a theoretical basis for developing methods of autonomous command and guidance of a herd. A survival-of-the-fittest approach is suggested as a theoretical basis for selection, mutation, and adaptation of a description of (1) the body, joints, sensors, actuators, and control computer of each robot, and (2) the connectivity of each robot with the rest of the herd, such that the herd could be regarded as consisting of a set of artificial creatures that evolve to adapt to a previously unknown environment. A distributed simulation environment has been developed to test the proposed approaches in the Titan environment. One blimp guides three surface sondes via a potential field approach. The results of the simulation demonstrate that the method used for control is feasible, even if significant uncertainty exists in the dynamics and environmental models, and that the control architecture provides the autonomy needed to enable surface science data collection.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Computer simulation, Architecture, Electronic control systems, Fleet management, Robotics, Autonomous vehicles

Compact, Precise Inertial Rotation Sensors for Spacecraft

A document describes a concept for an inertial sensor for measuring the rotation of an inertially stable spacecraft around its center of gravity to within 100 microarc- seconds or possibly even higher precision. Whereas a current proposal for a spacecraft-rotation sensor of this accuracy requires one spacecraft dimension on the order of ten meters, a sensor according to this proposal could fit within a package smaller than 1 meter and would have less than a tenth of the mass. According to the concept, an inertial mass and an apparatus for monitoring the mass would be placed at some known distance from the center of gravity so that any rotation of the spacecraft would cause relative motion between the mass and the spacecraft. The relative motion would be measured and, once the displacement of the mass exceeded a prescribed range, a precisely monitored restoring force would be applied to return the mass to a predetermined position. Measurements of the relative motion and restoring force would provide information on changes in the attitude of the spacecraft. A history of relative- motion and restoring-force measurements could be kept, enabling determination of the cumulative change in attitude during the observation time.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Sensors and actuators, Spacecraft

Cargo-Positioning System for Next-Generation Spacecraft

A report discusses a proposed system for mounting loaded pallets in the cargo bay of a next-generation space-shuttle-like spacecraft, such that the center of mass of the cargo would lie within a 1-in. (2.54- cm) cube that would also contain the center of mass of the spacecraft. The system would include (1) an algorithm for planning the locations of the pallets, given the geometric and weight properties of the pallets, and the geometric restrictions of the cargo bay; (2) quick-connect/ quick-disconnect mounting mechanisms similar to those now used on air hoses; (3) other mounting mechanisms, comprising mostly spring-loaded pins, in a locking subsystem that would prevent shifting of the pallets under load; and (4) mechanisms for performing fine position adjustments to satisfy the center-of-mass requirement. The position-adjusting mechanisms would be motor-driven lead-screw mechanisms in groups of three — one for positioning each pin of the locking subsystem along each of three mutually perpendicular coordinate axes. The system also would include a triple threaded screw that would provide compensation for thermal expansion or contraction of the spacecraft.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Kinematics, Materials handling, Mountings, Spacecraft

Buckling and Fracture Analysis of Composite Skin-Stringer Panel Using VCCT and FEA Software

New finite element analysis simulation capabilities predict crack propagation in composites.

In the continuing goal of developing products with better performance at a lower cost, composites are becoming increasingly prevalent in the aerospace industry. Composite structures offer exceptional performance due to their high strength at a low weight. Additionally, one large integrated composite component can replace ten or more traditional metal parts, dramatically reducing manufacturing costs. For the first time in the aviation industry, companies are beginning to use composites for primary load-bearing components. Boeing announced that the new 787 aircraft will be the first airliner to use composite materials in the majority of the aircraft construction.

Posted in: Briefs, Mechanical Components, Mechanics, Aircraft structures, Computer simulation, Failure analysis, Computer software and hardware, Composite materials

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.