Health, Medicine, & Biotechnology

Continuous-Flow System Produces Medical-Grade Water

Pressurized flowing water is heated by absorption of microwave power. A continuous-flow system utilizes microwave heating to sterilize water and to thermally inactivate endotoxins produced in the sterilization process. The system is designed for use in converting potable water to medical-grade water. Systems like this one could be used for efficient, small-scale production of medical-grade water in laboratories, clinics, and hospitals. This system could be adapted to use in selective sterilization of connections in ultra-pure-water-producing equipment and other equipment into which intrusion by microorganisms cannot be tolerated. Lightweight, portable systems based on the design of this system could be rapidly deployed to remote locations (e.g., military field hospitals) or in response to emergencies in which the normal infrastructure for providing medical-grade water is disrupted. Larger systems based on the design of this system could be useful for industrial production of medical-grade water.

Posted in: Briefs, TSP, Bio-Medical, Medical, Water quality, Medical equipment and supplies, Heat treatment, Radiation


Discrimination of Spore-Forming Bacilli Using spoIVA

Sporulation-specific primers are mixed into a PCR cocktail. A method of discriminating between spore-forming and non-spore-forming bacteria is based on a combination of simultaneous sporulation-specific and non-sporulation-specific quantitative polymerase chain reactions (Q-PCRs). The method was invented partly in response to the observation that for the purposes of preventing or reducing biological contamination affecting many human endeavors, ultimately, only the spore-forming portions of bacterial populations are the ones that are problematic (or, at least, more problematic than are the non-spore-forming portions).

Posted in: Briefs, TSP, Bio-Medical, Medical


Sensitive, Rapid Detection of Bacterial Spores

This capability is beneficial for medicine, public health, and biowarfare defense. A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries.

Posted in: Briefs, Bio-Medical, Medical, Bacteria, Medical, health, and wellness, Reaction and response times, Test equipment and instrumentation


Adenosine Monophosphate-Based Detection of Bacterial Spores

AMP is released by means of heat shock, then detected via bioluminescence.A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 °C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity.

Posted in: Briefs, Bio-Medical, Medical, Bacteria, Biological sciences, Test procedures


Detecting Phycocyanin-Pigmented Microbes in Reflected Light

Concentrations are estimated from ratios between spectral radiances.A recently invented method of measuring concentrations of phycocynanin- pigmented algae and bacteria in water is based on measurement of the spectrum of reflected sunlight. When present in sufficiently high concentrations, phycocynanin- pigmented microorganisms can be hazardous to the health of humans who use, and of animals that depend on, an affected body of water. The present method is intended to satisfy a need for a rapid, convenient means of detecting hazardous concentrations of phycocynanin-pigmented microorganisms. Rapid detection will speed up the issuance of public health warnings and performance of corrective actions.

Posted in: Briefs, TSP, Bio-Medical, Medical, Environmental testing, Water quality, Test procedures


Expert System Control of Plant Growth in an Enclosed Space

An adjustable environment optimizes growth while minimizing consumption of resources. The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term “control” implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment.

Posted in: Briefs, Bio-Medical, Medical, Computer software and hardware, Biological sciences


Purifying Nucleic Acids From Samples of Extremely Low Biomass

A new method is able to circumvent the bias to which one commercial DNA extraction method falls prey with regard to the lysing of certain types of microbial cells, resulting in a truncated spectrum of microbial diversity. By prefacing the protocol with glass-bead-beating agitation (mechanically lysing a much more encompassing array of cell types and spores), the resulting microbial diversity detection is greatly enhanced.

Posted in: Briefs, Bio-Medical, Medical, Biological sciences, Test procedures


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.