Health, Medicine, & Biotechnology

Zero-G Condensing Heat Exchanger with Integral Disinfection

The proposed concept promises to improve the life support environment for astronauts.

John H. Glenn Research Center, Cleveland, Ohio

A concept for a unique zero-g condensing heat exchanger that has an integral ozone-generating capacity has been conceived. This design will contribute to the control of metabolic water vapor in the air, and also provide disinfection of the resultant condensate, and the disinfection of the air stream that flows through the condensing heat exchanger.

Posted in: Briefs, Materials, Medical, Thermal management

Concurrent O2 Generation and CO2 Control for Advanced Life Support

Lyndon B. Johnson Space Center, Houston, Texas

A life support system generates oxygen in low oxygen and/or hazardous environments such as mining, chemical/biological attacks, nuclear fallout, or space exploration. Based on proven technology, this O2/CO2 control system has the potential to significantly reduce the mass of the oxygen carried into the low oxygen and/or hazardous environment by continuously regenerating the oxygen used by the human subject(s).

Posted in: Briefs, Medical, Carbon dioxide, Human factors, Oxygen equipment

Gene Expression Signatures for Colon Carcinogenesis and Radiation-Induced Cellular Transformation

Lyndon B. Johnson Space Center, Houston, Texas

Monitoring colon health and transformation into a diseased tissue, including inflammation and cancer, is difficult using conventional techniques, as individuals are required to undergo invasive procedures. However, by using exfoliated cells, it is possible to characterize the overall health of the colon by monitoring patterns of gene expression.

Posted in: Briefs, Bio-Medical, Medical, Patient Monitoring, Medical, health, and wellness

Detecting High Stress in Oral Interviews and Text Documents

Content of an interview or text is subjected to various levels of statistical analysis to determine if the person knows the truth and is communicating it.

Ames Research Center, Moffett Field, California

When a person is interviewed, some of the answers may be inaccurate, or even deceptive, because the person may have either incomplete information, is telling only part of the truth, or is fabricating a false answer, or a combination of all three. When the person is habitually making statements that are known to be false, or only partly true, emotional and/or intellectual conflicts often arise within them, and these conflicts may become manifest by inconsistencies in use of different parts of speech or in logical relationships between statements. These inconsistencies are more subtle than inconsistencies in factual statements, and identification of these inconsistencies is more difficult and less straightforward than identification of factual inconsistencies.

Posted in: Briefs, TSP, Electronics & Computers, Information Sciences, Medical, Data Acquisition, Statistical analysis, Human factors

Predicting Heart Age Using Electrocardiography

Lyndon B. Johnson Space Center, Houston, Texas

Knowledge of a patient’s cardiac age, or “heart age,” could prove useful to both patients and physicians for encouraging lifestyle changes that are potentially beneficial for cardiovascular health. This may be particularly true for patients who exhibit symptoms, but who test negative for cardiac pathology.

Posted in: Briefs, TSP, Electronics & Computers, Information Sciences, Medical, Data Acquisition, Medical, health, and wellness, Data acquisition, Data acquisition (obsolete)

Prediction of Visual Acuity from Wavefront Aberrations

This automated vision test is accurate, simple, and fast.

Ames Research Center, Moffett Field, California

Visual acuity (clearness of vision) usually is measured by an eye doctor using an eye chart. It measures the smallest letters that can be reliably identified by the patient at a specified distance. The traditional test requires the patient to look and report which letters they see.

Posted in: Briefs, TSP, Medical, Medical, health, and wellness

Mobility Augmentation System Using Switchable Spring Mechanisms

This system could be used by disabled persons and individuals in rehabilitation who require prosthetics.

NASA’s Jet Propulsion Laboratory, Pasadena, California

The disclosed device provides key elements to enabling compact exercise machines that overcome many of the disadvantages of the current spacesuit, as well as medical prosthetics and exoskeletons. The mechanism is based on switchable, curved, leaf, and torsion spring mechanisms that support the user joints and at the contact with the ground to enable high-speed, low-loss locomotion. The springs are primed with an actuator to counteract losses and recycle the user’s elastic energy in the locomotion. The mechanism is designed to be switchable and to allow for removing the springs from the structure for fine control. Adjustable hard-stops are embedded into each joint to prevent overextension and optimize the performance at each gait. The spring mechanisms are made from carbon fiber composites to reduce the weight of the system. The components of this mechanism can be structurally connected to each other via a mechanical clutch to form a symmetric lower-extremity system with a passive spring mechanism to reduce the requirement of the joints to dampen the impact forces and recycle some of the energy of walking and running.

Posted in: Briefs, TSP, Medical, Springs, Human factors, Human machine interface (HMI)

HeartBeatID – Heart Electrical Actions as Biometric Indicia

One or more biometric indicia, such as fingerprints, voice prints, retinal scans, and facial features, are often used to identify or authenticate the identity of a user seeking access to a given resource. Cardiac muscle is myogenic and is capable of generating an action potential and depolarizing and repolarizing signals from within the muscle. An intrinsic conduction system (ICS), a group of specialized cardiac cells, passes an electrical signal throughout the heart as a PQRST (Preview, Question, Read, Study, Test) signature.

Posted in: Briefs, Medical, Security systems

Cryogenic Grinding for Mechanical Abrasion for Hardy Endospores

The method is far superior to conventional mechanical abrasion strategies.

A comparative analysis was carried out between an emerging cryogenic grinding method and a conventional wet-chemistry/bead-beating endospore disruption approach. After extensive trial and error, it was determined that a regimen of three cryogenic grinding cycles of 2 minutes each was optimum for downstream DNA recovery. Spores embedded in ice exhibited a mere 1-log reduction in recovery following cryo-milling for up to 30 minutes. The observed total spore-borne DNA recovery was quite impressive, as well established, streamlined techniques for extracting DNA from endospores typically recover, at best, ≈10% of the molecules present. To facilitate the nucleic-acid-based testing required to detect and quantify DNA and endospores recovered, this innovation implements cryogenic grinding procedures followed by qPCR (quantitative polymerase chain reaction) methods to verify this novel capture technique.

Posted in: Briefs, Medical, Research and development

Making Mesh Buckypaper Capsules for Transplantation of Cells and Implantation of Medical Devices

Applications include gene therapy, cell transplantation for treatment of diabetes and other disorders, and improved biocompatibility of implantable medical devices.

The innovation consists of a method for fabricating containers (“biocapsules”) made of biocompatible mesh for holding living cells and tissues, to facilitate transplantation into the body, for a wide range of high-impact medical applications. The biocompatible mesh (buckypaper) is made of carbon nanotubes (CNTs), and the containers are fabricated by depositing the nanotubes onto pre-formed molds, in order to achieve the desired shape and size of the biocapsule. Various forms are possible, including hollow tubes, closed cylinders, and more complex shapes, determined by the configuration of the mold. The biocompatibility of the capsule makes it possible to implant a variety of cells into a host, even cells that would otherwise be considered “foreign,” such as cells from unmatched donors, specially engineered cells, and even nonhuman cells. Because the capsule pores are too small for the cells to pass, the cells stay inside the capsule, where they are protected from the host immune system. The pores of the biocapsule permit gas exchange (oxygen, carbon dioxide), as well as free diffusion of metabolites, which keeps the cells healthy. Tissue or tissue fragments, and micro- or nano-scale medical devices can also be placed inside the biocapsule to facilitate their implantation into the body.

Posted in: Briefs, Medical, Medical, health, and wellness, Fabrication

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.