Health, Medicine, & Biotechnology

Sterilization of Bioresorbable Polymers

Sterilization method should be considered during the design phase. Bioresorbable polymers for medical devices encompass a broad class of materials with two of the more common materials being poly(L-lactic acid) and poly(lactic-co-glycolic acid). Some terminal sterilization processes may result in changes in materials properties, thereby significantly impacting the functional behavior of bioresorbable implants. Matching a terminal sterilization method to a bioresorbable implant requires the materials properties of the device to be considered as part of the product development process. Currently, there are several types of terminal sterilization processes in use for these polymers, including gamma radiation, e-beam radiation, and ethylene oxide (EtO). Steri lization with nitrogen dioxide (NO2) gas provides a room-temperature alternative that should be considered for this class of materials.

Posted in: Briefs, MDB, Briefs, Custom & Contract Manufacturing, Coatings & Adhesives, Composites, Materials, Plastics, Implants & Prosthetics, Medical, Patient Monitoring

Read More >>

Laser Marking for ID and Traceability Within the Medical Industry

Laser marking provides easy and effective labeling for medical devices. The use of lasers to mark surgical instruments has become of greater significance, however, the parameters used in these applications are not always fully appreciated. The medical industry, in particular, has utilized laser technology primarily to mark, weld, and cut medical devices for years. Lasers address the need for microscopic applications: to cut widths measurable in microns, spot welds with heat affected zones barely visible to the unaided eye, and highly resolved biocompatible markings that enable traceability of instruments and implants. In common with other industries, medical devices and pharmaceutical businesses turn to lasers for a one-step, fast, flexible, permanent, and a highly automated marking process.

Posted in: Briefs, MDB, Briefs, Custom & Contract Manufacturing, FDA Compliance/Regulatory Affairs, Medical, Fiber Optics, Lasers & Laser Systems, Optics, Photonics

Read More >>

FRET-Aptamer Assays for Bone Marker Assessment, C-Telopeptide, Creatinine, and Vitamin D

Applications include assessment of osteoporosis, and aptamer assays for veterinary analytes, infectious disease, food- and water-borne pathogens, and chemical/biological threats. Astronauts lose 1.0 to 1.5% of their bone mass per month on long-duration spaceflights. NASA wishes to monitor the bone loss onboard spacecraft to develop nutritional and exercise countermeasures, and make adjustments during long space missions. On Earth, the same technology could be used to monitor osteoporosis and its therapy.

Posted in: Briefs, Bio-Medical, Medical

Read More >>

Medicine Delivery Device With Integrated Sterilization and Detection

This automated medicine delivery device would ensure that patients receive medication on schedule and at the right dosage level. Sterile delivery devices can be created by integrating a medicine delivery instrument with surfaces that are coated with germicidal and anti-fouling material. This requires that a large-surface- area template be developed within a constrained volume to ensure good contact between the delivered medicine and the germicidal material. Both of these can be integrated using JPLdeveloped silicon nanotip or cryo-etch black silicon technologies with atomic layer deposition (ALD) coating of specific germicidal layers.

Posted in: Briefs, Bio-Medical, Medical

Read More >>

Wireless Body Area Networks for Health Monitoring

A wireless personal health monitoring system using smartphones to upload data could revolutionize US healthcare. Faculty in the departments of electrical and computer engineering are leading research in mHealth at The University of Alabama in Huntsville. mHealth capitalizes on what Dr. Emil Jovanov, associate dean for graduate education and research in the College of Engineering, calls “major revolutions” in computer informatics, smartphones, and energy-efficient and miniaturized electronics and sensors. It can provide health information to the patient directly, to the physician via the Internet, and to researchers as aggregated databases.

Posted in: Briefs, MDB, Briefs, Electronics, Diagnostics, FDA Compliance/Regulatory Affairs, Imaging, Medical, Software

Read More >>

Visual Image Sensor Organ Replacement

This innovation is a system that augments human vision through a technique called “Sensing Super-position” using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks.

Posted in: Briefs, MDB, Briefs, Displays/Monitors/HMIs, Imaging, Diagnostics, Imaging, Medical, Sensors, Software

Read More >>

Humanlike Articulated Robotic Headform for Respirator Fit Testing

The testing of individual respiratory protection (IRP) devices is now accomplished with panels of human wearers. Historical attempts to simulate the human face and head have been unsuccessful for a variety of reasons that include imprecision in reproduction of facial dimensions and unrepresentative textures of the surfaces applied to headforms.

Posted in: Briefs, MDB, Briefs, Bio-Medical, Medical

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.