Medical

Apparatus for Sampling Surface Contamination

Liquid suspensions of samples can be dispensed systematically into analytical instruments. An apparatus denoted a swab device has been developed as a convenient means of acquiring samples of contaminants from surfaces and suspending the samples in liquids. (Thereafter, the liquids can be dispensed, in controlled volumes, into scientific instruments for analysis of the contaminants.) The swab device is designed so as not to introduce additional contamination and to facilitate, simplify, and systematize the dispensing of controlled volumes of liquid into analytical instruments.

Posted in: Medical, Briefs

Read More >>

Novel Species of Non-Spore-Forming Bacteria

One new bacterial species was discovered in a regenerative enclosed life-support module air system. While cataloging cultivatable microbes from the airborne biological diversity of the atmosphere of the Regenerative Enclosed life-support Module Simulator (REMS) system at Marshall Space Flight Center, two strains that belong to one novel bacterial species were isolated. Based on 16S rRNA gene sequencing and the unique morphology and the taxonomic characteristics of these strains, it is shown that they belong to the family Intrasporangiaceae, related to the genus Tetrasphaera, with phylogenetic distances from any validly described species of the genus Tetrasphaera ranging from 96.71 to 97.76 percent.

Posted in: Medical, Briefs

Read More >>

Chamber for Aerosol Deposition of Bioparticles

Standard coupons can be covered with reproducible areal concentrations of bioparticles. The laboratory apparatus shown in the figure is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles.

Posted in: Medical, Briefs

Read More >>

Hand-Held Units for Short-Range Wireless Biotelemetry

These units would power surgically implanted sensors. Special-purpose hand-held radio- transceiver units have been proposed as means of short-range radio powering and interrogation of surgically implanted microelectromechanical sensors and actuators. These units are based partly on the same principles as those of the units described in “Printed Multi-Turn Loop Antennas for RF Biotelemetry” (LEW-17879-1), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 48. Like the previously reported units, these units would make it unnecessary to have wire connections between the implanted devices and the external equipment used to activate and interrogate them.

Posted in: Medical, Briefs

Read More >>

Wearable Wireless Telemetry System for Implantable BioMEMS Sensors

Physiological monitoring would entail minimal risk, discomfort, or restriction of mobility. Telemetry systems of a type that have been proposed for the monitoring of physiological functions in humans would include the following subsystems: Surgically implanted or ingested units that would comprise combinations of microelectromechanical systems (MEMS)- based sensors [bioMEMS sensors] and passive radio-frequency (RF) readout circuits that would include miniature loop antennas. Compact radio transceiver units integrated into external garments for wirelessly powering and interrogating the implanted or ingested units.

Posted in: Medical, Briefs

Read More >>

Redesigned Human Metabolic Simulator

Apparatus simulates atmospheric effects of human respiration. A design has been formulated for a proposed improved version of an apparatus that simulates atmospheric effects of human respiration by introducing controlled amounts of carbon dioxide, water vapor, and heat into the air. Denoted a human metabolic simulator (HMS), the apparatus is used for testing life-support equipment when human test subjects are not available.

Posted in: Medical, Briefs

Read More >>

Cell-Detection Technique for Automated Patch Clamping

Candidate cells are identified automatically within one second. A unique and customizable machine-vision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify “good” and “bad” cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost.

Posted in: Medical, Briefs

Read More >>