Medical

Laser Marking for ID and Traceability Within the Medical Industry

Laser marking provides easy and effective labeling for medical devices. The use of lasers to mark surgical instruments has become of greater significance, however, the parameters used in these applications are not always fully appreciated. The medical industry, in particular, has utilized laser technology primarily to mark, weld, and cut medical devices for years. Lasers address the need for microscopic applications: to cut widths measurable in microns, spot welds with heat affected zones barely visible to the unaided eye, and highly resolved biocompatible markings that enable traceability of instruments and implants. In common with other industries, medical devices and pharmaceutical businesses turn to lasers for a one-step, fast, flexible, permanent, and a highly automated marking process.

Posted in: Bio-Medical, Custom & Contract Manufacturing, Packaging, Optics/Photonics, Fiber Optics, Lasers & Laser Systems, FDA Compliance/Regulatory Affairs, Medical, Briefs, MDB

Read More >>

FRET-Aptamer Assays for Bone Marker Assessment, C-Telopeptide, Creatinine, and Vitamin D

Applications include assessment of osteoporosis, and aptamer assays for veterinary analytes, infectious disease, food- and water-borne pathogens, and chemical/biological threats. Astronauts lose 1.0 to 1.5% of their bone mass per month on long-duration spaceflights. NASA wishes to monitor the bone loss onboard spacecraft to develop nutritional and exercise countermeasures, and make adjustments during long space missions. On Earth, the same technology could be used to monitor osteoporosis and its therapy.

Posted in: Bio-Medical, Medical, Briefs

Read More >>

Medicine Delivery Device With Integrated Sterilization and Detection

This automated medicine delivery device would ensure that patients receive medication on schedule and at the right dosage level. Sterile delivery devices can be created by integrating a medicine delivery instrument with surfaces that are coated with germicidal and anti-fouling material. This requires that a large-surface- area template be developed within a constrained volume to ensure good contact between the delivered medicine and the germicidal material. Both of these can be integrated using JPLdeveloped silicon nanotip or cryo-etch black silicon technologies with atomic layer deposition (ALD) coating of specific germicidal layers.

Posted in: Bio-Medical, Medical, Briefs

Read More >>

10 Essential Questions for Reevaluating Your Medical Device Assembly Process

Medical device manufacturers that assemble devices and equipment must meet stringent FDA regulations for quality and product consistency, which makes rigorous process control essential. Fluids for medical device manufacturing can be extremely expensive. It is vital to have quality assembly equipment that generates consistent and accurate results, without fluid contamination, to avoid costly waste.

Posted in: Bio-Medical, Medical, White Papers, MDB

Read More >>

A Computing Platform Based on 4th Generation Intel® Core™ Processors That Provides Flexible and Expandable I/Os for In Vitro Diagnostics Instruments

In the medical world, In Vitro Diagnostic (IVD) instruments are ubiquitously used in hospital labs, doctor offices, and at home. IVD instruments are designed for various qualitative or quantitative diagnostic procedures, commonly called assays, in assessing or measuring the target entity out of the samples. For different assays, IVD instruments are designed with the goal to automate the process, combining and streamlining labor-intensive steps. Based on their applications, these steps could be combined in one self-contained platform, in several discrete platforms, or a combination of both, depending on the application’s needs. Furthermore, some platforms use modularization, starting with minimum modules and then adding modules as the needs grow. This enables laboratories to pick and choose optional modules as needed. With modular design in mind, most IVD instrument providers start with a small footprint platform, and enhance the design with an expandability mechanism to accommodate more modules for future product enhancements. In order to be most effective, an embedded computing platform used in an IVD instrument needs to be easy-to-configure and easy-to-expand.

Posted in: Bio-Medical, Medical, White Papers, MDB

Read More >>

100 Percent Solids: Superior Adhesive Technology for the Medical Industry

Adhesives using 100 percent solids coating act fast, without need for solvents. In the medical industry, adhesives play a crucial role in applications ranging from diagnostics and device assembly to transdermal and wound care. There are varying methods by which an adhesive can be coated onto a substrate, but solvent coating has dominated in the medical industry for many years. Solvent-coated silicone, acrylic, and rubber-based adhesives are widely used as medical adhesive solutions. Despite their popularity, solvent-coated adhesives are far from a perfect answer to the medical market’s needs. Solvents may contain volatile organic compounds (VOCs) and even carcinogens that can be dangerous to humans. There are also major concerns regarding outgassing or leaching from solvent- coated adhesives in medical settings. As a process, solvent coating is not especially efficient with adhesives requiring drying, which can limit speed and cost-effectiveness of processing.

Posted in: Bio-Medical, Manufacturing & Prototyping, Materials / Adhesives / Coatings, Materials, Coatings & Adhesives, Medical, Briefs, MDB

Read More >>

Humanlike Articulated Robotic Headform for Respirator Fit Testing

The testing of individual respiratory protection (IRP) devices is now accomplished with panels of human wearers. Historical attempts to simulate the human face and head have been unsuccessful for a variety of reasons that include imprecision in reproduction of facial dimensions and unrepresentative textures of the surfaces applied to headforms.

Posted in: Bio-Medical, Medical, Briefs, MDB

Read More >>