Health, Medicine, & Biotechnology

CRP Aptamers to Bone-Specific Alkaline Phosphatase (BAP)

Lyndon B. Johnson Space Center, Houston, Texas In order to detect and quantify bone-specific alkaline phosphatase (BAP) in a human biological sample, a binding agent (molecule) that specifically recognizes BAP in a sample is typically required. This binding agent can then be used in numerous assays/instruments to enable the detection and quantification of BAP.

Posted in: Briefs, TSP, Medical


Inkjet Technology Prints 'Soft Robot' Circuits

A new potential manufacturing approach from Purdue University researchers harnesses inkjet printing to create devices made of liquid alloys. The resulting stretchable electronics are compatible with soft machines, such as robots that must squeeze through small spaces, or wearable electronics.

Posted in: News, News, Surgical Robotics/Instruments



C-Flex Bearing Co. (Frankfort, NY) offers a Super Plastic torsional damping coupling that stabilizes high-precision systems by dampening transient torque variations. The patented design offers high-torque loads with zero backlash for positioning in industries such as medical, packaging, and semiconductor. The standard flexible coupling is made up of two high-strength aluminum ends with glass-impregnated polyamide flexures. They are available with both set screws and “No Mark” steel clamp bushings. English and metric versions are available. Bore sizes range from 0.125" to 1.25", and 4 mm to 32 mm. Lattice and servo styles are available in both the Super Plastic and all stainless steel versions. For Free Info Visit

Posted in: Products, Manufacturing & Prototyping, Joining & Assembly, Medical, Motion Control, Packaging, Semiconductors & ICs


Low Er-Doped Yttrium Gallium Garnet (YGG) as Active Media for Solid-State Lasers at 1651 nm

This technology could serve applications in the bio-medical areas such as nerve stimulation and dentistry. Goddard Space Flight Center, Greenbelt, Maryland The typical approach for producing laser output at the 1651-nm wavelength is via nonlinear frequency conversion. Lasers based on nonlinear conversion are complex, and it is very difficult to provide stability over time and over a wide range of operating temperatures. The efficiency of such optical sources is also low. A much more promising approach is the use of active media that allows for the development of solid-state lasers (SSL) with spectral emission at 1651 nm. An important requirement for this active medium is the ability to support in-band pumping with a low quantum defect since this approach leads to significant improvement in efficiency of SSLs and excellent beam characteristics due to low thermal stress of the active media.

Posted in: Briefs, TSP, Instrumentation, Medical, Lasers & Laser Systems, Test & Measurement


New Method Generates High-Resolution, Moving Holograms in 3D

The 3D effect produced by stereoscopic glasses used to watch movies cannot provide perfect depth cues. Furthermore, it is not possible to move one’s head and observe that objects appear different from different angles — a real-life effect known as motion parallax. Researchers have developed a new way of generating high-resolution, full-color, 3D videos that uses holographic technology. Holograms are considered to be truly 3D, because they allow the viewer to see different perspectives of a reconstructed 3D object from different angles and locations. Holograms are created using lasers, which can produce the complex light interference patterns, including spatial data, required to re-create a complete 3D object. To enhance the resolution of holographic videos, researchers used an array of spatial light modulators (SLMs). SLMs are used to display hologram pixels and create 3D objects by light diffraction. Each SLM can display up to 1.89 billion hologram pixels every second. Source:

Posted in: News, Imaging, Video, Medical


Hubble Spinoffs: Space Age Technology for the Masses

By Bruce A. Bennett Over the plast 25 years, some of the sophisticated technology developed for the HST has been successfully spun off and commercialized to improve life on Earth.

Posted in: Articles, Features, Cameras, Imaging, Manufacturing & Prototyping, Medical, Photonics, Semiconductors & ICs, Software


3D Volumetric Display Technology

The United States government spends a lot of money on its defense programs, investing in the training and technology necessary to arm and prepare the most advanced fighting force on the planet. The price tag for these efforts reached $581 billion in 20141 as various branches of defense continued to dedicate funds toward the research and development of innovative tools and technology.

Posted in: Application Briefs, Applications, Aerospace, Automotive, Electronics & Computers, Displays/Monitors/HMIs, Visualization Software, Medical, Optics, Photonics, Simulation Software


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.