Motion Control

Modular Climbing Robot Splits into Multiple Explorer Bots

A prototype of the Detachable Compliant Modular Robot (DCMR).

Researchers from the Robotics Research Centre at the International Institute of Technology – Hyderabad (IIIT-H), have developed a stair and obstacle climbing robot that can disassemble itself into smaller robots, and then reassemble back into one device. As a composite system, the Detachable Compliant Modular Robot (DCMR) can climb steep obstacles and staircases, and explore uneven terrain. When it detaches into multiple robots, it can explore cramped spaces, traverse flat terrain, and behave as a Multi Agent System (MAS).

Posted in: News, Motion Control, Robotics
Read More >>

Actuated Smartwatch Moves in Five Directions

The Cito prototype rotates, hinges, translates, rises, and orbits to add convenience for smartwatch users. (Credit: Jun Gong)

In an effort to make digital smartwatches more convenient for users, researchers at Dartmouth College and the University of Waterloo have produced a prototype watch face named Cito that moves in five different directions. With the ability to rotate, hinge, translate, rise, and orbit, the model improves functionality and addresses some of the limitations of today’s fixed-face watches.

Posted in: News, Motion Control
Read More >>

Mechanical Actuators Bend as They “Breathe”

The equipment used for testing the new materials. (Credit: MIT)

Extreme temperatures can severely strain a mechanical component because its material may have trouble enduring the heat without degrading. To address the problem, researchers at MIT developed a new material that expands and contracts as it lets oxygen in and out. The result is a new way to make actuators that could be used in extremely hot environments.

Posted in: News, Materials, Mechanical Components, Motion Control
Read More >>

Interface Simplifies Remote Robot Operation

Georgia Institute of Technology researchers created a new interface to remotely control robots that is much simpler and more efficient than current techniques. The user simply points and clicks on an item, then chooses a grasp. The robot does the rest of the work.

The traditional interface for remotely operating robots employs a computer screen and mouse to independently control six degrees of freedom, turning three virtual rings and adjusting arrows to get the robot into position to grab items or perform a specific task. But for someone who isn’t an expert, the ring-and-arrow system is cumbersome and error-prone. It’s not ideal, for example, for older people trying to control assistive robots at home.

Posted in: News, Motion Control, Robotics, Software
Read More >>

New Products: April 2017 Motion Design

Variable Frequency Drives

Through a new partnership, variable frequency drives (VFDs) from American Control Electronics (South Beloit, IL) will now be offered as a product add-on to Brother Gearmotors’ portfolio of sub-fractional AC gearmotors and reducers. OEMs have access to an optimized VFD for the Brother sub-fractional power range instead of purchasing an offthe- shelf VFD that may not be the best fit for the application. For example, a user buying a sub-fractional HP (1/100th to 1/6th HP) gear motor will not have to choose an off-the-shelf VFD rated for 1/4 HP. ACE’s microprocessor-based VFDs control AC motor speed and torque by varying input frequency and voltage.

Posted in: Products, Motion Control
Read More >>

Origami-Inspired Robot Can Ride with a Rover

The Pop-Up Flat Folding Explorer Robot (PUFFER) that’s in development at NASA’s Jet Propulsion Laboratory in Pasadena, CA, was inspired by origami. It travels with a rover, and its lightweight design can flatten itself, tucking in its wheels and crawling into places rovers can’t fit.

Posted in: News, Motion Control, Robotics
Read More >>

Differential Measurement System

The Measuring Division of Kaman Precision Products, Inc. (Middletown, CT) has released the KD-5100 differential measurement system, which provides resolution to a nanometer of positional change. Featuring a small package size – only 2 x 2.12 x 0.75 inches thick – the KD-5100 is a good choice for applications where space is a limiting factor. It is manufactured to MIL-H-38534, with MIL-SPEC components used throughout the electronics module wherever possible. The KD-5100 features rugged construction, with a mean time between failures of better than 238,000 hours in a space flight environment and 55,000 hours in a tactical environment.

Click here to learn more

Posted in: Products, Products, Data Acquisition, Motion Control, Positioning Equipment
Read More >>

Mechanical Metamaterials Can Block Symmetry of Motion

An artist’s rendering of mechanical metamaterials. (Credit: Cockrell School of Engineering)

Engineers and scientists at the University of Texas at Austin and the AMOLF institute in the Netherlands have invented mechanical metamaterials that transfer motion in one direction while blocking it in the other. The material can be thought of as a mechanical one-way shield that blocks energy from coming in but easily transmits it going out the other side. The researchers developed the mechanical materials using metamaterials, which are synthetic materials with properties that cannot be found in nature.

Posted in: News, Materials, Motion Control
Read More >>

Exo-Brake “Parachute” to Enable Safe Return for Small Spacecraft

Engineers pack the Technology Education Satellite with the Exo-Brake payload. Almost 4 square feet in cross section (0.35 square meters), the Exo-Brake is made of Mylar and is controlled by a hybrid system of mechanic struts and flexible cord. (Credit: NASA Ames/Dominic Hart)

Engineers at NASA’s Ames Research Center in Moffett Field, CA have been testing its Exo-Brake technology as a simple design that promises to help bring small payloads back through Earth’s atmosphere unharmed. An Exo-Brake is a tension-based, flexible braking device resembling a cross-parachute that deploys from the rear of a satellite to increase the drag. It is a de-orbit device that replaces the more complicated rocket-based systems that would normally be employed during the de-orbit phase of re-entry.

Posted in: News, Aerospace, Motion Control
Read More >>

Six-Legged Robots Move Faster with Bipod Gate

Researchers have discovered a faster and more efficient gait, never observed in nature, for six-legged robots walking on flat ground. Bio-inspired gaits, which are less efficient for robots, are used by real insects because they have adhesive pads to walk in three dimensions. (Credit: EPFL/Alain Herzog)

Researchers in Lausanne, Switzerland have determined that a bipod gait is the fastest and most efficient way for six-legged robots to move on flat ground, provided they don’t have the adhesive pads used by insects to climb walls and ceilings. This suggests designers of insect-inspired robots should make a break with the nature-inspired tripod-gait paradigm.

Posted in: News, Motion Control, Robotics
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.