Motion Control

Reactionless Drive Tube Sampling Device and Deployment Method

Springs and a counter-mass create a powerful and stable sampling device. NASA’s Jet Propulsion Laboratory, Pasadena, California A sampling device and a deployment method were developed that allow collection of a predefined sample volume from up to a predefined depth, precise sampling site selection, and low impact on the deploying spacecraft. This device is accelerated toward the sampled body, penetrates the surface, closes a door mechanism to retain the sample, and ejects a sampling tube with the sample inside. At the same time the drive tube is accelerated, a sacrificial reaction mass can be accelerated in the opposite direction and released in space to minimize the momentum impact on the spacecraft. The energy required to accelerate both objects is sourced locally, and can be a spring, cold gas, electric, or pyrotechnic. After the sample tube is ejected or extracted from the drive tube, it can be presented for analysis or placed in a sample return capsule.

Posted in: Briefs, TSP, Motors & Drives

Read More >>

Products of Tomorrow: March 2015

The technologies NASA develops don’t just blast off into space. They also improve our lives here on Earth. Life-saving search-and-rescue tools, implantable medical devices, advances in commercial aircraft safety, increased accuracy in weather forecasting, and the miniature cameras in our cellphones are just some of the examples of NASA-developed technology used in products today.

Posted in: Articles, Products, Aviation, Electronics & Computers, Detectors, Sensors

Read More >>

Micropulse Detonation Rocket Engine for Nano-Satellite Propulsion

Goddard Space Flight Center, Greenbelt, Maryland An efficient propulsion system would use a micropulse detonation rocket engine (–PDRE) for nano-satellite maneuverability in space. Technical objectives are to design, build, and conduct a small detonation tube experiment in order to explore the feasibility of using –PDRE for propelling a nano-satellite. The plan is to study the requirement and predict the performance of –PDRE using various candidate propellants, as well as to conduct ground experiments, demonstrate useful thrust, and measure the specific impulse in a two-year time frame, so that a follow-on project can be proposed in a future NRI Center Innovation Fund.

Posted in: Briefs, TSP

Read More >>

Propellant Loading Visualization Software

Monitoring of complex propulsion pressure systems has been simplified with colors. Goddard Space Flight Center, Greenbelt, Maryland Complex pressure systems are utilized during testing in the propulsion branch as well as during the propellant loading stage of a mission. Keeping track of the state of such a system becomes more difficult as the complexity of such a system increases, and when extensive procedures are being followed. A book-keeping system is needed for visualizing these complex systems.

Posted in: Briefs, TSP

Read More >>

Robust Gimbal System for Small-Payload Manipulation

This is a low-mass, small-volume gimbal unit. NASA’s Jet Propulsion Laboratory, Pasadena, California Spaceborne gimbal systems are typically bulky with large footprints. Such a gimbal system may consist of a forked elevation stage rotating on top of the azimuth motor, and occupy a large volume. Mounting flexibility of such a system may be limited.

Posted in: Articles, Briefs, TSP, Motors & Drives

Read More >>

Linear Position Sensors

H. G. Schaevitz Alliance Sensors Group (Moorestown, NJ) introduced the LR-19 series inductive linear position sensors. The contactless devices are designed for factory automation and a variety of industrial or commercial applications such as motor sport vehicles, automotive testing, solar cell positioners, wind turbine prop pitch and brake position, and packaging equipment. They are offered in six full-scale ranges from 25 to 200 mm. Operating from a variety of DC voltages, the sensors offer a choice of four analog outputs and include proprietary SenSetTM field recalibration.

Posted in: Articles, Products, Positioning Equipment, Sensors

Read More >>

Stepper Motor

Lin Engineering (Morgan Hill, CA) released the Xtreme Torque E5618 stepper motor that has been designed to reduce stalling, skipped steps, and provide efficient torque. The new design allows users to stay within the same frame size. The NEMA 23 stepper has a holding torque of 150 oz-in and is suited for applications with heavier loads or at increased risk of stalling or skipping steps. It also allows for an integral connector or flying lead wires.

Posted in: Articles, Products, Motors & Drives

Read More >>