Motion Control

Moving Magnet Voice Coil Actuators Offer Controllable Movement for High-Duty-Cycle Applications

There are two types of voice coil actuators: moving coil and moving magnet. The materials of construction are similar, since they both use rare earth magnets, steel, copper wire, and basic insulation materials. There is a tendency to want to say one type is better suited for certain applications; however, there are many different sizes and shapes of voice coil actuators, making it difficult to make blanket statements about which type of actuator works better, and where.

Posted in: Features, Motion Control, Articles

Read More >>

Optimizing Closed-Loop Control in Hydraulic Motion

Performing closed-loop control of hydraulic servo systems is often more challenging than controlling servomotor systems. The main reason is that hydraulic systems use compressible oil to move the actuator. Because of this, a hydraulic system can be modeled as a mass between two springs, where the piston and the load is the mass, and the oil on both sides of the piston represents the two springs. In contrast, servomotor systems are easier to control because there is basically only the inertia of the motor and the connected load to be dealt with.

Posted in: Features, Motion Control, Articles

Read More >>

Robotic Exoskeleton Vastly Improves Quality of Life

Worldwide an estimated 185 million people use a wheelchair daily. A company based in Auckland, New Zealand, has developed an innovative robotic technology that helps people with mobility impairment get back on their feet— the Rex Bionics robotic exoskeleton. Its integrated maxon motors help to ensure smooth limb movement.

Posted in: Rehabilitation & Physical Therapy, Implants & Prosthetics, Biosensors, Mechanical Components, Power Supplies, Electronics, Power Management, Manufacturing & Prototyping, Motion Control, Motors & Drives, Power Transmission, Positioning Equipment, Medical, Orthopedics, Articles, Features, MDB

Read More >>

Feedback Sensors Keep Servomotors on Target

Fundamentally, a servo system can perform no more accurately than the accuracy of the feedback device controlling it. In addition, errors in speed or position can be introduced into the system by the less-than-perfect mechanisms that transfer the motor power to the load. Environmental factors like electrical noise or temperature may also introduce positioning errors. Sometimes the errors are acceptable. More frequently, however, they are not. When it comes to high-performance servo applications, feedback devices fall into several different categories. Each offers unique advantages and disadvantages, both electrical and mechanical, that make one better suited for a particular application than another.

Posted in: Features, Motion Control, Articles

Read More >>

Handling Delicate Materials

Special care needs to be taken when handling delicate materials used in medical applications. Small diameters provide increased flexibility needed for long-flex-life applications such as cardiac catheter wires. Many other applications also use these fine materials as winding and braiding materials, including the medical device industry, microelectronics, and composites.

Posted in: Features, Applications, Motion Control, Articles

Read More >>

Real-Time Software Enables Multi-Core PCs for Industrial Automation

As early as 25 years ago, industrial system integrators saw the great potential that the Windows operating system brought to PCs. They saw the possibility of using the advanced graphic capabilities that Windows offered versus the relatively primitive human interfaces of DOS-based applications and those of other proprietary OSes. Windows enabled the development of controllers with advanced human-ma chine interfaces (HMIs) that provide a whole new level of functionality, and make machines easier to use and maintain.

Posted in: Features, Motion Control, Articles

Read More >>

Using Source Measure Units to Characterize High-Power Semiconductors (Part 1)

The proliferation of electronic control and electronic power conversion into a variety of industries (e.g., energy generation, industrial motor drives and control, transportation, and IT) has made efficient power semiconductor device design and test more critical than ever. To demonstrate technology improvements, new device capabilities must be compared with those of existing devices. The use of semiconductor materials other than silicon demands the use of new processes. To be sustainable, these new processes must be tuned to deliver consistent results and high production yield. As new device designs are developed, reliability measurements must be performed on many devices over long periods. Therefore, test engineers must identify test equipment that is not only accurate, but scalable and cost-effective.

Posted in: Features, Motion Control, Articles

Read More >>

White Papers

Next-Generation, Miniature High Voltage Power Modules
Sponsored by EMCO High Voltage
Key Procedures and Aqueous Cleaning Agents for Metal and Electronic Component Cleaning
Sponsored by Alconox
Expanding GNSS Testing with Multiple Synchronized Signal Recorders
Sponsored by Averna
IEC 61131-3 Now in Motion
Sponsored by Trio Motion
Designing Ring Projections for Hermetic Sealing
Sponsored by Miyachi Unitek
Bridging the Armament Test Gap
Sponsored by Marvin Test Solutions

White Papers Sponsored By: