Motion Control

Sizing and Selecting Linear Motion Systems

The LOSTPED acronym can help designers avoid mistakes by reminding them to consider all the interrelated factors during system development and specification.

Virtually all manufacturing processes incorporate some type of linear motion. A common mistake that designers make when sizing and selecting linear motion systems is to overlook critical application requirements in the final system. This can lead to redesigns, and may also result in an over-engineered system that is costlier and less effective than desired. “LOSTPED” is a simple acronym that guides the designer in gathering the information needed to specify the appropriate linear motion components or modules in any given application.

Posted in: Articles, Motion Control
Read More >>

Piezo Technology in Pneumatic Valves

Solenoid devices are the standard for electrically controlled pneumatic valves. However, piezo valves offer many advantages over their solenoid counterparts, and open entirely new areas of application.

Pneumatic valves made with piezo technology offer many advantages. They are small, lightweight, extremely precise, durable, fast, and save energy. Piezo valves do not need energy to maintain a switching status, and therefore generate almost no heat. What's more, piezo valves can potentially be operated without any noise. Another key advantage is that they always work proportionally.

Posted in: Articles, Motion Control
Read More >>

Adding Simple Vision Systems to Collaborative Robots

Upfront evaluation can help determine if a vision system is the best solution for an automation application.

Adding vision to a collaborative robot can open a world of possibilities for automation applications. With a vision system, a robot can inspect parts, check specific features of a part, recognize a part to pick it up, count items, adjust its path using visual feedback, color sort, and so on. The breadth of applications requires careful consideration to ensure selection of the right technology for the job.

Posted in: Articles, Motion Control
Read More >>

Today’s Advanced Hose And Hydraulic Systems

If you’re under pressure to pick the right components to keep your hydraulic hose assemblies running at peak performance—without incidents or downtime—you’re not alone.

Posted in: White Papers, Motion Control, Automation
Read More >>

Shaping the Future of Service Robotics

Robots emerged in the early 1960s as a way to automate the monotonous and dangerous tasks in factories around the world. As time passed and new technologies emerged, these robots have taken a place outside of the industrial market and alongside humans in manufacturing and non-manufacturing applications alike.

Posted in: White Papers, Manufacturing & Prototyping, Motion Control, Automation, Robotics
Read More >>

How to Select a DC Motor: Coreless and Iron Core Brushed DC Motors

DC motors possess linear relationships that allow for very predictable operation. Motion control manufacturers and designers depend greatly on the premise that these linear relationships will hold true, since the laws of physics do not change. However, despite their simplicity, selecting a DC motor for an application can still be a daunting task. There are many other variables to take into account including dimensions, load, duty cycle, etc. This white paper provides an overview on Coreless / Brushed DC motors, and what to consider before committing.

Posted in: White Papers, Motion Control, Motors & Drives, Automation
Read More >>

Multiturn Kit Encoders Without Batteries or Gears: A Cost-Efficient Approach for Rotary Position Measurement in Servomotors and Rotating Equipment

POSITAL is introducing a new set of component-level products that are designed to be built into servomotors or other types of equipment when real-time measurement of rotary position (angular displacement) or rotational speed is required. Based on POSITAL’s well-proven magnetic rotary encoder technology, these new products provide manufacturers with a flexible and cost-effective way of incorporating rugged and precise rotation measurement capabilities directly into their devices.

Posted in: White Papers, Mechanical Components, Mechanics, Motion Control
Read More >>

Scanning Performance of Air Bearing Equipped Precision Motion Systems

Scanning is a common technique in applications ranging from high-resolution microscopy to industrial material processing. Scanning involves moving either a workpiece or an optic at a constant velocity while a reading or writing operation takes place. Air bearings are used for both purposes, especially when high precision and reliability are vital. While the physical act of writing an image or capturing an image differ by application and industry, all such applications share a common requirement — maintaining a constant velocity.

Posted in: Articles, Motion Control, Imaging and visualization, Automation, Bearings, Reliability
Read More >>

Four Ways to improve Production by Understanding the Physics of Servos

There is always a need to increase production in automation applications. Sometimes achieving improvements requires breaking the process down to its fundamental basics. The science behind the technology of servo-based motion control systems should be considered when attempting to eliminate inefficiencies. Four fundamentals to examine are inertia, resonance, vibration suppression, and regeneration.

Posted in: Articles, Motion Control, Finite element analysis, Electronic control systems, Automation, Productivity
Read More >>

Converting from Hydraulic Cylinders to Electric Actuators

Hydraulics are rugged and deliver a low cost per unit of force, but electric rod actuators have attained higher force capacities while becoming more flexible, precise, and reliable.

Advances in motion control technology have prompted a new debate — do hydraulic cylinders or electric linear actuators offer the best solution for a linear motion application? Hydraulic cylinders provide high force at an affordable cost. Hydraulics are rugged, relatively simple to deploy, and deliver a low cost per unit of force. However, electric rod actuators (electric cylinders), particularly those with roller screws, have attained increasingly higher force capacities while becoming more flexible, precise, and reliable.

Posted in: Articles, Motion Control, Electrical systems, Flight control actuators, Hydraulic control, Reliability
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.