Motion Control

Dust Tolerant Connectors

The ruggedized housing for electrical or fluid connectors is designed to withstand harsh environments and rough handling. John F. Kennedy Space Center, Florida NASA’s Kennedy Space Center has developed a novel ruggedized housing for an electrical or fluid umbilical connector that prevents intrusion of dust, sand, dirt, mud, and moisture during field use under harsh conditions. The technology consists of a pair of hand-sized protective umbilical interface housings, each containing a connector with an integrated end cap. When the end cap covers the connector, the connector is protected. Each housing has a unique lever assembly connected to the end cap that, when squeezed, flips the end cap up to expose the connector. When in the up position, the two end caps face each other. To mate the connectors, the levers on both housings are squeezed, raising the end caps, and the two umbilicals are joined and twisted to couple them. Once the connectors are mated, the levers on both housings are released. This simultaneously seals both the umbilicals and the end caps. When dealing with cryogenic connectors, a purge can be applied to the housings to prevent icing when the connectors are demated.

Posted in: Briefs, Mechanical Components, Fluid Handling, Machinery & Automation

Read More >>

Model-Driven Innovation in Machine Design

This whitepaper discusses a Model-Driven Innovation process, an approach that makes a multidomain, system-level model the core of design activities, allowing engineers to see how individual subsystems work together. With this approach, problems can be fixed early without project delays, and designs can be validated with access to the underlying mathematics, allowing organizations seeking to mitigate system complexities to improve their ability to control costs, produce high-quality designs and move products to market more quickly. Using tools like MapleSim, the multidomain system modeling tool from Maplesoft, enables engineers to develop and test high-fidelity virtual prototypes of their complex dynamic systems.

Posted in: White Papers, Manufacturing & Prototyping, Motion Control, Machinery & Automation, Robotics

Read More >>

How to Prevent Step Losses with Stepper Motors

While stepper motors are an excellent solution for many applications, a key concern is step losses. However, in most instances step losses can be prevented or corrected. It is important to remember that a stepper motor does not operate like a DC motor. This white paper from MICROMO engineers provides guidance to determine step losses or non-operation across a variety of applications.

Posted in: White Papers, White Papers, Mechanical Components, Medical, Motion Control, Motors & Drives

Read More >>

Simplified Machine Design Approach for Optimal Servomotor Control

An often asked question from industrial machine builders or integrators is how they can effectively design or implement the conversion of a machine with servo technology to meet performance expectations. This is a specialized task filled with layers of complexity that can prove difficult to execute, even when the scope of work is fully understood.

Posted in: Articles, Motion Control

Read More >>

The Best Springs You Haven't Tried Yet

Flat wire wave springs offer the best balance of size and spring force. Here’s what you need to know to design with these high-performance alternatives to traditional springs. Discussed in this paper are the different styles of wave springs and the design advantages offered to the engineer, such as axial space savings, no torsional loads, consistent spring force, dimensional tolerances improvements, increased travel, etc. Additionally it shows some application examples and includes a formulas page for spring calculations.

Posted in: White Papers, Mechanical Components, Motion Control

Read More >>

Save Your Assembly Space and Weight with Smalley Wave Springs

Smalley Wave Springs offer the unique advantage of space savings when used to replace coil springs. By reducing spring operating height, wave springs also produce a decrease in the spring cavity and assembly size.

Posted in: White Papers, Mechanical Components, Motion Control, Machinery & Automation, Robotics

Read More >>

Reliable VFD Cables Boost Productivity, Minimize Downtime

From fans and blowers to 24/7 production line equipment, variable frequency drives (VFDs) are a mainstay of the industrial world due to their remarkable ability to improve the efficiency of motor-driven equipment. As part of a complete VFD package, high quality cable is one of the most important components in terms of achieving maximum productivity and minimizing downtime. When designing a robust VFD cable, the materials used in its production are critical to ensuring that the cable’s electrical properties will guarantee peak performance. For system engineers and others involved in specifying VFDs, cable quality should be one of the most decisive factors.

Posted in: White Papers, Aerospace, Defense, Mechanical Components, Motion Control

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.