Motion Control

Selecting Miniature Motors for your Medical Devices

The creation of small, portable infusion pumps opened a new chapter in medical care. A patient can receive carefully metered and timed doses of medicine, without requiring a visit to the medical practitioner, allowing life to be less restrictive. Ambulatory pumps have been developed to deliver insulin, nutritive supplements and anticancer drugs.

Posted in: White Papers, White Papers

Read More >>

Integrating Functional Pneumatic Safety Devices into Control Systems

Over the past several years, controls engineers have become adept at applying control systems to machine safety applications. The issue is that safety is a moving target. There are new and revised international standards to contend with. Furthermore, the supplier community is moving swiftly forward in developing solutions that render the old way of doing things obsolete.

Posted in: Articles

Read More >>

Bonded Magnets: A Versatile Class of Permanent Magnets

Permanent magnets are ubiquitous in modern societies. Devices which use permanent magnets include motors, sensors, actuators, acoustic transducers, etc. These are used in home appliances, speakers, office automation equipment, aerospace, wind turbine generators, medical laboratory diagnostic test equipment, and more. It is estimated, for example, that a typical automobile uses up to 120 permanent magnets in windshield wipers, starter motors, seat adjusters, door lock actuators, fuel pumps, sensors, gauges, etc. The development of Hybrid Electric Vehicle and Electric Vehicle drive technologies has been greatly enhanced by the availability of high performance magnetic materials.

Posted in: White Papers, Coatings & Adhesives

Read More >>

Reducing Power-On/Off Glitches in Precision DACs: Part 2

Part 1 of this article introduced a phenomenon called power-on/off glitch. The example discussed the impact of this phenomenon on a motor control system. We limited our analysis to a DAC where the output buffer is powered on in normal mode: zero-scale or mid-scale. In Part 2, we analyze when the DAC output is powered on in high-impedance mode. We present a mathematical model for the power-on glitch, followed by board-level solutions to minimize it.

Posted in: Articles

Read More >>

Autonomous Robots Keep Warehouse Running Green

YLOG, a startup company in Austria, uses an intelligent and very environmentally friendly logistics system that is winning an increasing number of customers. The technology makes use of individual, freely moving Autonomous Intelligent Vehicles (AiVs) that detect each other, observe right-of-way rules, recognize one-way routes, and complete their tasks fully autonomously without intervention from or coordination by a central computer.

Posted in: Application Briefs, Articles, Motors & Drives, Machinery & Automation, Robotics

Read More >>

PLC-Based Robotic Controls Versus OEM Robotic Controls

As more manufacturing facilities and distribution centers discover the benefits of robotic material handling solutions, the decision of how best to control the robot must be made. While robot original equipment manufacturers (OEMs) offer their own tightly integrated controller, recent developments have enabled control by a Programmable Logic Controller, or PLC. For facilities where PLC-based controls are already used in other machine control applications, the benefits of using one for the robot as well may be a wiser choice than the OEM controller. Let’s review PLC-based robotic control to help you determine if it’s the best choice for your application.

Posted in: Articles, Industrial Controls & Automation, Robotics

Read More >>

Reducing Power-On/Off Glitches in Precision DACs

Voltage glitches are common in a signal chain path, especially when the system is being powered up or down. Depending on the peak amplitude and glitch duration, the end result in the system output can be catastrophic. One example is an industrial motor control system where a digital-to-analog converter (DAC) drives the motor drivers to control motor spin. If the glitch amplitude is higher than the motor driver’s sensitivity threshold, the motor could be spinning without control in any direction when the system is powered up/down.

Posted in: Briefs, Power Management, Motors & Drives

Read More >>