Motion Control

Reducing Design Time for Linear Motion Systems

Design time can be reduced while ensuring durability and high performance. Reducing design time is critical in engineering because the result is lower costs and faster time to market. Design time often includes a number of non-value-added activities such as re-design, over-design, or scope creep that can be minimized by thoroughly understanding all of the application criteria and verifying calculations and analysis via parametric testing of components, modules, and full assemblies with data acquisition equipment, and proving out projected performance results with testing.

Posted in: Features, Motion Control, Articles

Read More >>

Wireless Foot Switch Design Considerations

Key selection factors for OEMs to consider include wireless protocol selection, battery selection, operating-voltage and space constraints, and wireless receiver location. Wireless foot switches for the control of medical devices are gaining acceptance and growing in popularity — prompting OEMs to design medical equipment for use with a wireless foot switch or to accept a wireless foot switch as a pre-sale or post-sale option.

Posted in: Bio-Medical, Motion Control, Medical, Briefs, MDB

Read More >>

Electronic Flow Control Valve (EFCV) with Pressure Compensation Capability

Flow control is one of the most critical functions in the hydraulic industry. Traditionally, flow control is implemented via a proportional or servo valve. When current is applied into the coil of a solenoid (proportional valve) or a torque motor (servo valve), a corresponding electromagnetic force is generated. These forces could either directly stroke the spool (single-stage configuration) or indirectly move the main stage spool via regulating the hydraulic pressures on each end of the main stage spool (multiple-stage configuration).

Posted in: Features, Motion Control, Articles

Read More >>

Steer-by-Wire Systems with Integrated Torque Feedback Improve Steering Performance and Reduce Cost

Hydraulic steering systems have long dominated the industrial utility vehicle market because of their familiarity both to vehicle designers and operators. More recently, a trend has been seen towards the use of electronic steer-by-wire systems that provide greater design flexibility by enabling software to customize the connection between the steering wheel and steering mechanism. Several suppliers offer integrated steer-by-wire systems targeting the industrial utility vehicle market. A key differentiating factor is the method used to provide torque feedback to give the operator a heightened sense of vehicle control. The latest generation of integrated steer-by-wire systems consumes less power, is less expensive, and offers the ability to be programmed to provide a wide range of value-added features.

Posted in: Features, Motion Control, Articles

Read More >>

Motion Control Requirements for Medical Instruments

Medical equipment motion control runs the gamut from electric wheelchair motion to heart assist pumps. This article will focus on the segment consisting of medical laboratory instruments. Even in this segment, motion control ranges from precision liquid handling and dispensing, to sample- handling robotics and automated sample storage and retrieval systems. We’ll delve into precision liquid handling and dispensing and related functions, and the interaction between the mechanical system and the motion control system. High-pole-count permanent magnet AC servo motors can simplify system design and improve system performance and reliability when mated with control systems capable of bringing out their full potential.

Posted in: Features, Motion Control, Articles

Read More >>

Synchronizing Hydraulic Axes in a Pultrusion Machine

Many hydraulically operated machines perform adequately with on/off “bang-bang” valves, but some need special controls to avoid maintenance problems and deliver quality production output. This is particularly true when multiple hydraulic axes need to be synchronized. In these cases, designers should use an electro-hydraulic motion controller with multi-axis synchronization capability.

Posted in: Features, Motion Control, Articles

Read More >>

Synchronizing Hydraulic Axes in a Pultrusion Machine

Many hydraulically operated machines perform adequately with on/off “bang-bang” valves, but some need special controls to avoid maintenance problems and deliver quality production output. This is particularly true when multiple hydraulic axes need to be synchronized. In these cases, designers should use an electro-hydraulic motion controller with multi-axis synchronization capability.

Posted in: Features, Motion Control, Articles

Read More >>

White Papers

How To Guide for the Most Common Measurements
Sponsored by National Instruments
The Benefits of Integrated Video Management
Sponsored by Curtiss Wright
White Paper: MIL-STD-1553 IP Cores - An Emerging Technology
Sponsored by Sealevel
Bridging the Armament Test Gap
Sponsored by Marvin Test Solutions
Sensors For Use In Aerospace, Military and Industrial Markets
Sponsored by Columbia Research
OEM Optical System Development
Sponsored by Ocean Optics

White Papers Sponsored By: