Motion Control

Simulation of Fluid-Structure Interaction in Hydraulic Pump Design

Axial pumps with cam-driven commutation units — so-called PWK pumps — emerged as a result of a research project conducted in the Department of Hydraulics and Pneumatics at the Gdansk University of Technology. As for all axial hydraulic piston pumps, several cylinder chambers are positioned around the rotating shaft of an axial pump with cam-driven commutation units — called PWK pumps. The rotation of the shaft and the attached swash plate leads to movement of the pistons that alternately decreases and increases the fluid volume of the chambers. A window — which is part of the control sleeve or commutating bushing — connects the chamber between the pistons with the low-pressure and highpressure intake and outtake channels.

Posted in: Features, Articles

Read More >>

Reducing Machine Controller Design and Deployment

Machine design and deployment requires integration of various technologies such as controls, mechanics, vision, lasers, data acquisition, and software, to mention only a few. These mechatronic solutions usually target a specific purpose such as part manufacturing, marking, packaging, etc. Often the controller is a key focus in the design because it must connect and coordinate all of the processes on the machine. Using separate programmable logic controllers (PLCs) and motion controllers necessitates integration, which is costly and time-consuming. Using a single controller for the machine eliminates the need for integration and shortens design and deployment time and cost.

Posted in: Features, Articles

Read More >>

High-Accuracy Closed Loop Force Feedback

Benefits of serial servo digital presses for force gauge specifications. Hand-driven press assemblies, which require a specific amount of force applied for a given amount of time, present challenges when attempting to accurately measure or replicate results in production or quality control processes. In contrast, servo-driven digital presses are able to provide accurate, consistent, and repeatable results while outputting trackable data. By controlling position and current, the servo-driven digital press allows for stable, accurate, and repeatable control.

Posted in: Bio-Medical, Briefs, Briefs

Read More >>

Rotary Sensing Technologies for Medical and Robotic Shaft Angle Sensing Applications

This technical brief provides an overview of existing types of rotary sensor technologies, and compares the strengths and weaknesses of each type for use as through-hole shaft angle sensing devices. Today’s sensor technologies for robotic and medical applications include many devices that have evolved from industrial applications. Because of this general migration, they are not ideally suited to the requirements in new robotic and medical products. Specifically, conventional contacting and non-contacting sensing solutions do not offer the customization, small package size(s), and environmental and durability requirements that are so necessary in these custom applications.

Posted in: Bio-Medical, Briefs, Briefs, Positioning Equipment, Robotics, Sensors

Read More >>

Underwater Autonomous Vehicles Combine Robotics and Vision to Inspect Oil Pipelines

Among the various components of a submarine pipeline, the vertical section known as a riser is critical to managing the pipeline. This section connects the piping that runs along the bottom of the sea with the floating production platform.

Posted in: Features, Articles

Read More >>

Motion Control and System Engineering Considerations

Motion control choices are best made in light of the whole system architecture, as the selection of system architecture will drive not only the implementation and integration stages of the project, but also manufacturing and field service, and even the ability to ship and install the final product. We will first review a quick tour of system engineering, and then go on to the motion control specifics.

Posted in: Features, Articles

Read More >>

Reducing Design Time for Linear Motion Systems

Design time can be reduced while ensuring durability and high performance. Reducing design time is critical in engineering because the result is lower costs and faster time to market. Design time often includes a number of non-value-added activities such as re-design, over-design, or scope creep that can be minimized by thoroughly understanding all of the application criteria and verifying calculations and analysis via parametric testing of components, modules, and full assemblies with data acquisition equipment, and proving out projected performance results with testing.

Posted in: Features, Articles

Read More >>

White Papers

Electropolishing for Hydraulics and Pneumatics
Sponsored by able electropolishing
Proper Bearing Handling Can Help Prevent Failures
Sponsored by ast bearings
White Paper: Computer System Design for Critical Applications
Sponsored by Sealevel
Technology To Speed Wire Harness New Product Introduction
Sponsored by mentor graphics
Lubrication Considerations for Bearings
Sponsored by ast bearings
High-Speed, Real-Time Recording Systems Handbook
Sponsored by Pentek

White Papers Sponsored By: