Motion Control

Rotary Series Elastic Actuator

The actuator provides motion and sensing for the degrees of freedom in the upper arm of a dexterous humanoid robot. In order to perform human-like movement, an actuator is placed at each degree of freedom (DOF) in a humanoid robot. Additionally, these actuators must be packaged in an arrangement that approximates human structure and appearance. In this innovation, a rotary actuator assembly incorporates a brushless DC motor, a gear reduction, a variety of sensors, and a custom planar torsion spring to provide motive force, passive compliance, and torque sensing within an anthropomorphic package. The actuator, in various size scales, was designed for the humanoid robot described in “Dexterous Humanoid Robot,” (MSC-24739), NASA Tech Briefs, Vol. 38, No. 6 (June 2014), p. 52.

Posted in: Briefs, Motion Control, Sensors and actuators, Robotics


High-Temperature Actuators for Aircraft Propulsion Systems

Future “more electric aircraft” (MEA) will require electric actuation systems for control surfaces and engine controls. Electric motors, drive electronics, and mechanisms are essential elements of aircraft actuation in MEAs that incorporate Electro-Magnetic Actuators (EMAs). High-temperature environments experienced in aircraft applications place demands on actuator components, materials, and insulation systems that dictate the use of new technologies and materials.

Posted in: Articles, Motion Control, Flight control actuators, Thermal management, Heat resistant materials, Electric motors


Probe Positioning System for Antenna Range

Three or more cables provide the desired positioning.In situ measurements of antenna patterns on rovers in a simulated terrain are difficult to make with conventional antenna range techniques. The desired pattern data covers a hemisphere above the antenna of interest, which is close to the ground. This is incompatible with traditional measurements that place the antenna under test on a movable support that tilts and rotates.

Posted in: Briefs, TSP, Motion Control, Antennas, Sensors and actuators, Spacecraft


Fluidic Actuators with No Moving Parts

Two new fluidic actuator designs were developed to control fluid flow in ways that will ultimately result in improved system performance and fuel efficiency in to improve the aerodynamic performance of a variety of vehicles. These flow control actuators, often referred to as fluidic oscillators or sweeping jet actuators, utilize the Coanda effect to generate spatially oscillating bursts (or jets). They can be embedded directly into a control surface (such as a wing or a turbine blade) to help reduce flow separation, increase lift, reduce drag, enhance mixing, or increase heat transfer. Recent studies show up to a 60% performance enhancement (such as increased lift or reduced drag) with fluidic actuators.

Posted in: Briefs, TSP, Motion Control, Sensors and actuators, Aerodynamics


Designing a Multi-Segmented Robot for Hull Climbing

The Multi-segmented Magnetic Ro bot (MSMR) project addresses a capability gap in the intelligence, surveillance, and reconnaissance needs of the U.S. Navy visit, board, search, and seizure (VBSS); Navy SEALs; and Marine Force Reconnaissance teams. A segmented robotic platform with magnetic wheels and a minimal acoustic signature was developed that can navigate the hull, tanks, and passageways of a ship. The goal was to provide effective climbing and turning ability over and within a ferrous hull that typically features plumbing, protrusions, and indentations such as weld seams where hull plating meets. Such a robot will be able to climb the hull of a ship, provide covert perch-and-stare surveillance of the deck area, and wirelessly transmit audio/video before a search team boards. The technology is also promising for inspection of tanks, and dangerous or hard-to-reach passageways and voids in maritime vessels.

Posted in: Articles, Motion Control, Robotics, Inspections, Marine vehicles and equipment, Military vehicles and equipment


Moving Magnet Voice Coil Actuators Offer Controllable Movement for High-Duty-Cycle Applications

There are two types of voice coil actuators: moving coil and moving magnet. The materials of construction are similar, since they both use rare earth magnets, steel, copper wire, and basic insulation materials. There is a tendency to want to say one type is better suited for certain applications; however, there are many different sizes and shapes of voice coil actuators, making it difficult to make blanket statements about which type of actuator works better, and where.

Posted in: Articles, Motion Control, Sensors and actuators, Copper, Insulation, Steel


Autonomous Robotic Manipulation (ARM)

This sensor-driven, model-based approach can be applied to small-batch manufacturing processes and explosive ordnance disposal. NASA’s Jet Propulsion Laboratory, Pasadena, California Autonomous robotic manipulators have the potential to increase manufacturing efficiency, provide in-home care, and reduce the risk to humans in hazardous situations. The current challenge in autonomous robotic manipulation is to approach the capabilities of dedicated, one-off manipulators in known environments with versatile, inexpensive, and ubiquitous manipulator systems that can operate in a range of environments with only high-level human input.

Posted in: Briefs, Motion Control, Robotics


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.