Motion Control

Moving Magnet Voice Coil Actuators Offer Controllable Movement for High-Duty-Cycle Applications

There are two types of voice coil actuators: moving coil and moving magnet. The materials of construction are similar, since they both use rare earth magnets, steel, copper wire, and basic insulation materials. There is a tendency to want to say one type is better suited for certain applications; however, there are many different sizes and shapes of voice coil actuators, making it difficult to make blanket statements about which type of actuator works better, and where.

Posted in: Features, Motion Control, Articles

Read More >>

Integrated Motion Solution Keeps Laser Marking Machine Costs Down

As the demands of traceability and compliance are put on manufacturers, using a laser provides permanent marking of a variety of information, including 2D bar codes, serial numbers, company information, and logos.

Posted in: Applications, Motion Control, Application Briefs

Read More >>

Optimizing Closed-Loop Control in Hydraulic Motion

Performing closed-loop control of hydraulic servo systems is often more challenging than controlling servomotor systems. The main reason is that hydraulic systems use compressible oil to move the actuator. Because of this, a hydraulic system can be modeled as a mass between two springs, where the piston and the load is the mass, and the oil on both sides of the piston represents the two springs. In contrast, servomotor systems are easier to control because there is basically only the inertia of the motor and the connected load to be dealt with.

Posted in: Features, Motion Control, Articles

Read More >>

Enabling Microliquid Chromatography by Microbead Packing of Microchannels

The microbead packing is the critical element required in the success of onchip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and lowpower element to separate amino acids and their chiral partners efficiently to understand better the origin of life.

Posted in: Bio-Medical, Imaging & Diagnostics, Monitoring & Testing, Materials / Adhesives / Coatings, Optics/Photonics, Fluid Handling, Medical, Diagnostics, Measuring Instruments, Briefs, TSP, MDB

Read More >>

Heart Pump with Behind-the-Ear Power Connector

One-third of patients with heart pumps develop infection at abdominal connection. Cardiac surgeons and cardiologists at the University of Maryland Heart Center are part of a multi-center clinical trial evaluating the efficacy of powering heart pumps through a skull-based connector behind the ear. The pumps, called left ventricular assist devices (LVADs), support the heart’s main pumping chamber, the left ventricle. LVADs are implanted in the chest and powered with external batteries. Typically, these devices, which are used for patients with severe heart failure, are powered through an electrical cord connected at the abdomen, where potentially deadly infections can develop.

Posted in: Bio-Medical, Drug Delivery & Dispensing, Electronics, Implants & Prosthetics, Electronic Components, Power Supplies, Power Management, Power Transmission, Fluid Handling, Medical, Patient Monitoring, Briefs, MDB

Read More >>

Robotic Exoskeleton Vastly Improves Quality of Life

Worldwide an estimated 185 million people use a wheelchair daily. A company based in Auckland, New Zealand, has developed an innovative robotic technology that helps people with mobility impairment get back on their feet— the Rex Bionics robotic exoskeleton. Its integrated maxon motors help to ensure smooth limb movement.

Posted in: Rehabilitation & Physical Therapy, Implants & Prosthetics, Biosensors, Mechanical Components, Power Supplies, Electronics, Power Management, Manufacturing & Prototyping, Motion Control, Motors & Drives, Power Transmission, Positioning Equipment, Medical, Orthopedics, Articles, Features, MDB

Read More >>

Feedback Sensors Keep Servomotors on Target

Fundamentally, a servo system can perform no more accurately than the accuracy of the feedback device controlling it. In addition, errors in speed or position can be introduced into the system by the less-than-perfect mechanisms that transfer the motor power to the load. Environmental factors like electrical noise or temperature may also introduce positioning errors. Sometimes the errors are acceptable. More frequently, however, they are not. When it comes to high-performance servo applications, feedback devices fall into several different categories. Each offers unique advantages and disadvantages, both electrical and mechanical, that make one better suited for a particular application than another.

Posted in: Features, Motion Control, Articles

Read More >>