Motion Control

Linear Guide Systems Streamline Aircraft Seat Assembly and Operation

Linear guide rails are an important component within aircraft interiors. Following are some of the places where they are used: • For seat adjustments — forward and back seat movements, footrests, sliding armrests, and tables. • Rails enable 180° positioning for super first class seats that flatten for sleeping. • Sliding privacy screens between passengers. • Kitchen slide-outs, such as garbage compactors. • Sliding lavatory doors.

Posted in: Features, Articles, Motion Control

Read More >>

Robotic Accuracy Improves Aerospace Manufacturing

Where accuracy is concerned, robots have traditionally relied on repeatability. In the past, robotic accuracy has not been developed to a level of maturity acceptable to standard production processes. Critical aerospace manufacturing techniques such as fastening and drilling were historically not held to tight tolerances. Typical tolerances for airframe assembly fastening were in the +0.030" range. The standard is set by the positional requirement for drilling of fastener holes, which is a key target application for robotics in manufacturing.

Posted in: Features, Motion Control, Articles

Read More >>

Hybrid Stepper Advancements Improve Medical Pump Performance

Designers of medical pumps often have to deal with the challenge of implementing precise, yet low-cost motion control. For most medical pumps, there are three basic technology alternatives for implementing such electronic motion control: permanent magnet brush DC motors, brushless DC motors, or step motors. Step motors (sometimes called stepping motors, stepper motors, or simply steppers) are a solid choice for position or speed control. Steppers are inherently digital — a pulse applied to the drive electronics results in a shaft movement of one step. They are commonly used “open loop,” meaning without feedback, due to their ability to achieve the desired number of steps every time (if sized properly). The number of incoming pulses and the rate at which they are fed can be used to implement very precise, yet very simple motion (position, speed, and acceleration) control. As long as the speeds required are not too high (less than 3000 RPM, typically), steppers often offer a far simpler, lower-cost, and maintenance- free alternative.

Posted in: Features, Motion Control, Articles

Read More >>

Factors to Consider When Selecting and Specifying LVDT Linear Position Sensors

Fitting the right type of linear position sensor to an application requires at least a working knowledge of the attributes of this electromechanical device. Starting with the basics, the LVDT (linear variable differential transformer) is a common type of linear position sensor widely used in electromechanical systems today. It consists of two basic elements: a stationary coil assembly and a movable core or armature. While most LVDTs are fundamentally AC-in/AC-out devices, some have electronics built-in to make them DC-in/DC-out devices. This gives rise to the terms “AC-LVDTs” and “DC-LVDTs”.

Posted in: Features, Motion Control, Articles

Read More >>

Simulation of Fluid-Structure Interaction in Hydraulic Pump Design

Axial pumps with cam-driven commutation units — so-called PWK pumps — emerged as a result of a research project conducted in the Department of Hydraulics and Pneumatics at the Gdansk University of Technology. As for all axial hydraulic piston pumps, several cylinder chambers are positioned around the rotating shaft of an axial pump with cam-driven commutation units — called PWK pumps. The rotation of the shaft and the attached swash plate leads to movement of the pistons that alternately decreases and increases the fluid volume of the chambers. A window — which is part of the control sleeve or commutating bushing — connects the chamber between the pistons with the low-pressure and highpressure intake and outtake channels.

Posted in: Features, Motion Control, Articles

Read More >>

Reducing Machine Controller Design and Deployment

Machine design and deployment requires integration of various technologies such as controls, mechanics, vision, lasers, data acquisition, and software, to mention only a few. These mechatronic solutions usually target a specific purpose such as part manufacturing, marking, packaging, etc. Often the controller is a key focus in the design because it must connect and coordinate all of the processes on the machine. Using separate programmable logic controllers (PLCs) and motion controllers necessitates integration, which is costly and time-consuming. Using a single controller for the machine eliminates the need for integration and shortens design and deployment time and cost.

Posted in: Features, Motion Control, Articles

Read More >>

Underwater Autonomous Vehicles Combine Robotics and Vision to Inspect Oil Pipelines

Among the various components of a submarine pipeline, the vertical section known as a riser is critical to managing the pipeline. This section connects the piping that runs along the bottom of the sea with the floating production platform.

Posted in: Features, Motion Control, Articles

Read More >>

White Papers

Step on It! Walking for Power
Sponsored by HP
Troubleshooting EMI in Embedded Designs
Sponsored by Rohde and Schwarz A and D
Force Sensors for Design
Sponsored by Tekscan
HIG™: Combining the Benefits of Inductive and Resistive Heating
Sponsored by iTherm Technologies
9 Questions to Ask when Specifying a Slewing Ring Bearing
Sponsored by Kaydon
Oscilloscope Fundamentals
Sponsored by Rohde and Schwarz A and D

White Papers Sponsored By: