Motion Control

Probe Positioning System for Antenna Range

Three or more cables provide the desired positioning. NASA’s Jet Propulsion Laboratory, Pasadena, California In situ measurements of antenna patterns on rovers in a simulated terrain are difficult to make with conventional antenna range techniques. The desired pattern data covers a hemisphere above the antenna of interest, which is close to the ground. This is incompatible with traditional measurements that place the antenna under test on a movable support that tilts and rotates.

Posted in: Briefs, TSP, Motion Control

Read More >>

Fluidic Actuators with No Moving Parts

Langley Research Center, Hampton, Virginia Two new fluidic actuator designs were developed to control fluid flow in ways that will ultimately result in improved system performance and fuel efficiency in to improve the aerodynamic performance of a variety of vehicles. These flow control actuators, often referred to as fluidic oscillators or sweeping jet actuators, utilize the Coanda effect to generate spatially oscillating bursts (or jets). They can be embedded directly into a control surface (such as a wing or a turbine blade) to help reduce flow separation, increase lift, reduce drag, enhance mixing, or increase heat transfer. Recent studies show up to a 60% performance enhancement (such as increased lift or reduced drag) with fluidic actuators.

Posted in: Briefs, TSP, Motion Control

Read More >>

Embedded Servo Drive Boosts Speed of Packaging Lines

Pfankuch Machinery, based in Ahrensburg, Germany, is a leading manufacturer of friction feeder systems for inserting leaflets and products into sales packaging. An embedded smart servo drive from Metronix (part of the Apex Tool Group in Sparks, MD) has allowed Pfankuch to increase the speed of its latest friction feeder — the SmartFeeder — by 50% while also doubling the positioning accuracy. This offers a massive gain in productivity for the many users of this type of packaging equipment in markets including pharmaceutical, and food and beverage processing. At the same time, the new embedded drive minimizes the hardware costs of the upgrade for Pfankuch, because the drive was adapted for the application, providing a stripped-down product suitable for OEM integration that eliminates numerous expensive components.

Posted in: Application Briefs, Motion Control

Read More >>

Integrated Motion Solution Keeps Laser Marking Machine Costs Down

As the demands of traceability and compliance are put on manufacturers, using a laser provides permanent marking of a variety of information, including 2D bar codes, serial numbers, company information, and logos.

Posted in: Application Briefs, Motion Control

Read More >>

Autonomous Robotic Manipulation (ARM)

This sensor-driven, model-based approach can be applied to small-batch manufacturing processes and explosive ordnance disposal. NASA’s Jet Propulsion Laboratory, Pasadena, California Autonomous robotic manipulators have the potential to increase manufacturing efficiency, provide in-home care, and reduce the risk to humans in hazardous situations. The current challenge in autonomous robotic manipulation is to approach the capabilities of dedicated, one-off manipulators in known environments with versatile, inexpensive, and ubiquitous manipulator systems that can operate in a range of environments with only high-level human input.

Posted in: Briefs, Motion Control

Read More >>

Sliding Gait for ATHLETE Mobility

A new concept was developed for a walking-driving hybrid in which wheels are repositioned by sliding them along the ground. NASA’s Jet Propulsion Laboratory, Pasadena, California ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) is a multipurpose mobility platform for planetary surfaces. It is a cross between a wheeled rover and a walking robot, and travels using powered wheels mounted on the end of each of six robotic limbs. Each limb is a fully articulated robotic manipulator with six or seven degrees of freedom.

Posted in: Briefs, TSP, Motion Control

Read More >>

Enabling Microliquid Chromatography by Microbead Packing of Microchannels

The microbead packing is the critical element required in the success of onchip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and lowpower element to separate amino acids and their chiral partners efficiently to understand better the origin of life.

Posted in: Briefs, MDB, TSP, Briefs, TSP, Coatings & Adhesives, Materials, Diagnostics, Imaging, Medical, Patient Monitoring, Fluid Handling, Optics, Photonics, Measuring Instruments

Read More >>

White Papers

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.