Motion Control

Coming Soon - Magnetic Motor-Feedback Kits – A New Way to Improve Performance and Reduce Costs

Today’s motor-feedback systems generally fall into one of two categories: high performance and very expensive or low cost, but lacking performance and features.

Posted in: Upcoming Webinars, Motors & Drives, Sensors

Read More >>

How To Substantially Reduce Encoder Cost While Gaining Functionality With Multi-Turn Rotary Position Sensors

Many applications require rotation counters that can measure angles greater than 360º. However the low-cost 10-turn potentiometers most design engineers are familiar with can’t always meet user requirements for resolution and reliability. As an alternative, optical absolute encoders are too expensive for many applications. These solutions require a continuous power supply or they will lose count when power is restored. Also, geared technology/rotation counters are subject to significant wear.

Posted in: White Papers, Motion Control, Machinery & Automation, Robotics, Data Acquisition, Sensors

Read More >>

Airfoil-Shaped Fluid Flow Tool for Use in Making Differential Measurements

Researchers at NASA’s Marshall Space Flight Center have developed a suite of adaptable flow measurement devices that can be easily installed without compromising the structural integrity of existing conduits. With their simple installation procedures, the devices can be removed or exchanged without difficulty, allowing for temporary or extended use. The design is in-situ and self-contained, taking measurements from within the conduit, thereby offering more accuracy and allowing for opportunities to modify system operating parameters. Some of the designs can be used to mix the flow or inject a second fluid into the stream.

Posted in: Briefs, Mechanical Components, Mechanics, Fluid Handling

Read More >>

Piezo-Actuated, Fast-Acting Control Valve

The ability of this valve to throttle makes it suitable for regulators and cold gas thrusters.High-power electric propulsion systems have the potential to revolutionize space propulsion due to their extremely high performance. This can result in significant propellant savings on space vehicles, allowing the overall mass to shrink for launch on a less expensive vehicle, or to allow the space vehicle to carry more payload at the same weight. Many electrical propulsion systems operate in pulse mode, pulsing hundreds or thousands of times per second. Creating reliable valves that can operate in pulse mode for extremely long periods and at low power is critical in these applications. Current solenoid valves have difficulty achieving the life requirements. In addition, a valve with the ability to throttle has the potential to simplify the entire propulsion system by eliminating the need for pressure regulators or latching valves.

Posted in: Briefs, Mechanical Components, Mechanics, Fluid Handling

Read More >>

Interface Between STAR-CCM+ and 42 for Enhanced Fuel Slosh Analysis

Fuel slosh is excited during spacecraft maneuvers. The forces and torques exerted on the spacecraft by the slosh must be controlled by the attitude control system to maintain correct pointing and spacecraft orbit. In some rare cases, the attitude control system may excite the slosh and cause a loss of control of the spacecraft, or the expected spacecraft motion from a certain control command will be different enough from the control command to adversely affect the mission. By linking the computational fluid dynamics (CFD) and the flight simulation software, the fuel slosh can be modeled at high fidelity by the CFD software, while receiving and passing information to and from the flight simulation software, thus increasing the fidelity of both models. In the past, fuel slosh has either been modeled with an equivalent mechanical model, such as a pendulum, or with a standalone CFD simulation.

Posted in: Briefs, Mechanical Components, Mechanics, Fluid Handling

Read More >>

Mechanisms for Achieving Non-Sinusoidal Waveforms on Stirling Engines

The current state-of-the-art Stirling engines use sinusoidal piston and displacer motion to drive the thermodynamic cycle and produce power. Research performed at NASA Glenn has shown that non-sinusoidal waveforms have the potential to increase Stirling engine power density, and could possibly be used to tailor engine performance to the needs of a specific application. However, the state-of-the-art Stirling engine design uses gas springs or planar springs that are very nearly linear, resulting in a system that resonates at a single frequency. This means that imposing non-sinusoidal waveforms, consisting of multiple frequencies, requires large forces from the drive mechanism (either the alternator or the crank shaft). These large forces increase losses, and increase the size and requirements of the control system. This innovation aims to reduce the external forcing requirements by introducing internal mechanical components that provide the forces necessary to achieve the desired waveforms.

Posted in: Briefs, Mechanical Components, Mechanics, Motion Control

Read More >>

RFID Cavity

Potential applications include inventory tracking for containers such as waste receptacles or storage containers.This technology provides a method for interrogating collections of items with radio-frequency identification (RFID) tags. It increases the read accuracy, meaning that more of the item tags will be successfully read. It also permits smaller tag antennas than would otherwise be necessary.

Posted in: Briefs, Mechanical Components, Mechanics, Fluid Handling

Read More >>

White Papers

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.