Motion Control

Analyzing 6-Pulse Drive Harmonic Mitigation Techniques for Industrial Automation

Contemporary industrial automation control systems are employing variable frequency drives (VFDs) in ever-increasing numbers. VFDs give control engineers flexibility to precisely regulate the speed and torque of motors in a wide array of applications. The proliferation of these VFDs has brought increased attention to harmonic distortion created by these drives and their effects on the power system. A standard-pulse drive with no built-in harmonic mitigation controls may interfere with neighboring equipment, reduce equipment life, and create a serious negative impact on the quality of utility power. Looking at the theory of operation for the following harmonic mitigation techniques and their typical performance levels may help take the guesswork out of harmonic reduction for these power systems.

Posted in: Articles, Motion Control, Automation
Read More >>

Reliable Locking in High-Vibration Environments

Today’s PCB plug-in connectors must accommodate many trends, including increasing miniaturization, rising levels of performance of electronic components, and growing complexity in machine and system engineering.

Posted in: Articles, Motion Control, Connectors and terminals, Electronic equipment, Vibration
Read More >>

Robotic Fabric Moves and Contracts

Researchers are developing a robotic, sensor-embedded fabric that moves and contracts. Such an elastic technology could enable a new class of soft robots, stretchable garments, "g-suits" for pilots or astronauts to counteract acceleration effects, and lightweight, versatile robots to roam alien landscapes during space missions.The robotic fabric is a cotton material containing sensors made of a flexible polymer and threadlike strands of a shape-memory alloy. The strands return to a coiled shape when heated, causing the fabric to move."We have integrated both actuation and sensing, whereas most robotic fabrics currently in development feature only sensing or other electronic components that utilize conductive thread," said Rebecca Kramer, an assistant professor of mechanical engineering at Purdue University. "We also use standard sewing techniques to introduce the thread-like actuators and sensors into the fabric, so they could conceivably be integrated into the existing textile manufacturing infrastructure."SourceAlso: See other Sensors tech briefs.

Posted in: News, Aerospace, Materials, Plastics, Motion Control, Automation, Robotics, Sensors
Read More >>

Researchers Equip Robot with Novel Tactile Sensor

Researchers at MIT and Northeastern University have equipped a robot with a novel tactile sensor that lets it grasp a USB cable draped freely over a hook and insert it into a USB port.The sensor is an adaptation of a technology called GelSight, which was developed by the lab of Edward Adelson, the John and Dorothy Wilson Professor of Vision Science at MIT, and first described in 2009. The new sensor isn’t as sensitive as the original GelSight sensor, which could resolve details on the micrometer scale. But it’s smaller — small enough to fit on a robot’s gripper — and its processing algorithm is faster, so it can give the robot feedback in real time.A GelSight sensor — both the original and the new, robot-mounted version — consists of a slab of transparent, synthetic rubber coated on one side with a metallic paint. The rubber conforms to any object it’s pressed against, and the metallic paint evens out the light-reflective properties of diverse materials, making it much easier to make precise optical measurements.In the new device, the gel is mounted in a cubic plastic housing, with just the paint-covered face exposed. The four walls of the cube adjacent to the sensor face are translucent, and each conducts a different color of light — red, green, blue, or white — emitted by light-emitting diodes at the opposite end of the cube. When the gel is deformed, light bounces off of the metallic paint and is captured by a camera mounted on the same cube face as the diodes.From the different intensities of the different-colored light, the algorithms developed by Adelson’s team can infer the three-dimensional structure of ridges or depressions of the surface against which the sensor is pressed.

Source

Read other Sensors tech briefs.

Posted in: News, LEDs, Lighting, Materials, Motion Control, Optics, Photonics, Automation, Robotics, Sensors
Read More >>

New Algorithm Lets Cheetah Robot Run

Speed and agility are hallmarks of the cheetah: The big predator is the fastest land animal on Earth, able to accelerate to 60 mph in just a few seconds. As it ramps up to top speed, a cheetah pumps its legs in tandem, bounding until it reaches a full gallop.Now MIT researchers have developed an algorithm for bounding that they’ve successfully implemented in a robotic cheetah — a sleek, four-legged assemblage of gears, batteries, and electric motors that weighs about as much as its feline counterpart. The team recently took the robot for a test run on MIT’s Killian Court, where it bounded across the grass at a steady clip. In experiments on an indoor track, the robot sprinted up to 10 mph, even continuing to run after clearing a hurdle. The MIT researchers estimate that the current version of the robot may eventually reach speeds of up to 30 mph.The key to the bounding algorithm is in programming each of the robot’s legs to exert a certain amount of force in the split second during which it hits the ground, in order to maintain a given speed: In general, the faster the desired speed, the more force must be applied to propel the robot forward. In experiments, the team ran the robot at progressively smaller duty cycles, finding that, following the algorithm’s force prescriptions, the robot was able to run at higher speeds without falling. Sangbae Kim, an associate professor of mechanical engineering at MIT, says the team’s algorithm enables precise control over the forces a robot can exert while running.

SourceAlso: Learn about Hall Thrusters for Robotic Solar System Exploration.

Posted in: News, Motion Control, Motors & Drives, Automation, Robotics, Software
Read More >>

Untethered Soft Robot Walks Through Flames

Developers from Harvard’s School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering have produced the first untethered soft robot — a quadruped that can stand up and walk away from its designers.The researchers were able to scale up earlier soft-robot designs, enabling a single robot to carry on its back all the equipment it needs to operate — micro-compressors, control systems, and batteries.Compared with earlier soft robots, which were typically no larger than a steno pad, the system is huge, measuring more than a half-meter in length and capable of carrying as much as 7½ pounds on its back.Giving the untethered robot the strength needed to carry mechanical components meant air pressures as high as 16 pounds per square inch, more than double the seven psi used by many earlier robot designs. To deal with the increased pressure, the robot had to be made of tougher stuff.The material settled on was a “composite” silicone rubber made from stiff rubber impregnated with hollow glass microspheres to reduce the robot’s weight. The robot’s bottom was made from Kevlar fabric to ensure it was tough and lightweight. The result was a robot that can stand up to a host of extreme conditions.SourceAlso: Learn about a Field-Reconfigurable Manipulator for Rovers.

Posted in: News, Composites, Materials, Mechanical Components, Motion Control, Motors & Drives, Automation, Robotics
Read More >>

Selecting the Proper Motor for Linear Motion Applications

Linear motion systems are found inside countless machines including precision laser cutting systems, laboratory automation equipment, semiconductor fabrication machines, CNC machines, factory automation, and many others too numerous to list. They range from the relatively simple such as an inexpensive seat actuator in a passenger vehicle, to a complex, multi-axis coordinate system complete with control and drive electronics for closed-loop positioning. No matter how simple or complex the linear motion system, at the most basic level, they all have one thing in common: moving a load through a linear distance in a specific amount of time.

Posted in: Articles, Motion Control, Automation, Cutting, Fabrication, Manufacturing equipment and machinery
Read More >>

Design Considerations for Gearmotors in Long-Life Applications

At first glance, the photo at the top is not appealing to any market — a pallet full of old gearmotors is not something one wants to think about after purchasing the necessary gearmotor/motor for their application. But think of it this way instead: these gearmotors were removed from their installation for a refurbishment project after being in service for 30 years. Sandia National Laboratories placed these gearmotors into service in their Heliostat Field in New Mexico in the 1970s. The gearmotors were used to position solar reflectors to concentrate light from all of the individual panels towards one point at the top of a tower. After 30 years, Sandia decided to upgrade the field with a new control system, and they decided to replace the still-operating gearmotors at the same time.

Posted in: Articles, Motion Control, Life cycle analysis
Read More >>

Wing-Flapping Aircraft Hovers and Flies

Life-sized, hummingbird-like, unmanned surveillance aircraft weighs two-thirds of an ounce, including batteries and video camera.

The Nano Hummingbird is a miniature aircraft developed under the Nano Air Vehicle (NAV) program funded through the Defense Advanced Research Projects Agency (DARPA). DARPA was established to prevent strategic surprise from negatively impacting U.S. national security, and to create strategic surprise for U.S. adversaries by maintaining the technological superiority of the U.S. military. The agency relies on diverse performers to apply multidisciplinary approaches to advance knowledge through basic research, and create innovative technologies that address current practical problems through applied research.

Posted in: Application Briefs, Motion Control, Product development, Military aircraft
Read More >>

NASA Tests Robot Swarms for Autonomous Movement

NASA engineers and interns are testing a group of robots and related software that will show whether it's possible for autonomous machines to scurry about an alien world such as the Moon, searching for and gathering resources just as an ant colony does.

Posted in: News, Communications, Wireless, Electronics & Computers, Motion Control, Antennas, RF & Microwave Electronics, Automation, Robotics, Software
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.