Motion Control

Probe Positioning System for Antenna Range

Three or more cables provide the desired positioning.In situ measurements of antenna patterns on rovers in a simulated terrain are difficult to make with conventional antenna range techniques. The desired pattern data covers a hemisphere above the antenna of interest, which is close to the ground. This is incompatible with traditional measurements that place the antenna under test on a movable support that tilts and rotates.

Posted in: Briefs, TSP, Motion Control, Antennas, Sensors and actuators, Spacecraft

Read More >>

Fluidic Actuators with No Moving Parts

Two new fluidic actuator designs were developed to control fluid flow in ways that will ultimately result in improved system performance and fuel efficiency in to improve the aerodynamic performance of a variety of vehicles. These flow control actuators, often referred to as fluidic oscillators or sweeping jet actuators, utilize the Coanda effect to generate spatially oscillating bursts (or jets). They can be embedded directly into a control surface (such as a wing or a turbine blade) to help reduce flow separation, increase lift, reduce drag, enhance mixing, or increase heat transfer. Recent studies show up to a 60% performance enhancement (such as increased lift or reduced drag) with fluidic actuators.

Posted in: Briefs, TSP, Motion Control, Sensors and actuators, Aerodynamics

Read More >>

Submersible Pressure Transducer for Tank Fluid Level Monitoring

Monitoring the level of liquid can be accomplished through the use of a pressure transducer. The density of the liquid and its height create pressure on the diaphragm of the pressure transducer to generate an accurate and cost-effective level measurement. Generally, pressure transducers can be used for level measurement from 10 inches of water column up to 10,000 PSI (700 bar).

Posted in: Application Briefs, Motion Control, Sensors and actuators

Read More >>

New Algorithms Enable Self-Assembling, Printable Robots

In two new papers, MIT researchers demonstrate the promise of printable robotic components that, when heated, automatically fold into prescribed three-dimensional configurations.One paper describes a system that takes a digital specification of a 3-D shape — such as a computer-aided design, or CAD, file — and generates the 2-D patterns that would enable a piece of plastic to reproduce it through self-folding.The other paper explains how to build electrical components from self-folding laser-cut materials. The researchers present designs for resistors, inductors, and capacitors, as well as sensors and actuators — the electromechanical “muscles” that enable robots’ movements.“We have this big dream of the hardware compiler, where you can specify, ‘I want a robot that will play with my cat,’ or ‘I want a robot that will clean the floor,’ and from this high-level specification, you actually generate a working device,” said Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.SourceAlso: Learn about Self-Assembling, Flexible, Pre-Ceramic Composite Preforms.

Posted in: News, Electronic Components, Electronics & Computers, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Motion Control, Motors & Drives, Power Transmission, Machinery & Automation, Robotics, Sensors, Computer-Aided Design (CAD), Mathematical/Scientific Software, Software

Read More >>

Wind Tunnel Tests Support Improved Design of B61-12 Bomb

Sandia National Laboratories has finished testing a full-scale mock unit representing the aerodynamic characteristics of the B61-12 gravity bomb in a wind tunnel. The tests on the mock-up were done to establish the configuration that will deliver the necessary spin motion of the bomb during freefall and are an important milestone in the Life Extension Program to deliver a new version of the aging system.

Posted in: News, Aerospace, Defense, Motion Control, Motors & Drives, Test & Measurement

Read More >>

Aircraft Engine Coating Could Triple Service Life and Save Fuel

Researchers at University West in Sweden are using nanoparticles in the heat-insulating surface layer that protects aircraft engines from heat. In tests, this increased the service life of the coating by 300%. The hope is that motors with the new layers will be in production within two years. The surface layer is sprayed on top of the metal components. Thanks to this extra layer, the engine is shielded from heat. The temperature can also be raised, which leads to increased efficiency, reduced emissions, and decreased fuel consumption.

Posted in: News, Aerospace, Aviation, Energy, Energy Efficiency, Ceramics, Coatings & Adhesives, Materials, Motion Control, Power Transmission, Nanotechnology

Read More >>

Engineers Develop 'Simple' Robotic Swarms

University of Sheffield engineers have developed a way of making hundreds — or even thousands — of tiny robots cluster to carry out tasks. The robots do not require memory or processing power. Each robot uses just one sensor that indicates the presence of another nearby robot. Based on the sensor's findings, the robots will either rotate on the spot, or move around in a circle until one can be seen.Until now, robotic swarms have required complex programming, complicating the development of miniaturized, individual robots. With the programming created by the Sheffield team, however, nanoscale machines are possible.SourceAlso: Learn about a Kinematic Calibration Process for Flight Robotic Arms.

Posted in: News, Motion Control, Machinery & Automation, Robotics, Sensors

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.