Nanotechnology

Purifying Nanomaterials by Dissolving Excess Reactants and Catalysts in Ferric Chloride

Liquid phase temperature salts dissolve metallic catalysts like Fe, Co, or Ni, and “wash” them away. John H. Glenn Research Center, Cleveland, Ohio Physical and chemical properties of nanomaterials are known to be significantly different from those having larger crystallites (i.e. bigger than nano), but with the same chemical compositions. Optimal uses of these new nanomaterial properties will likely result in engineering materials that are better than what is available today. Before this can happen, characterization of the physical and chemical properties of nanomaterials is needed.

Posted in: Briefs

Read More >>

Pyramid Micro-Electrofluidic-Spray Propulsion Thruster with Integrated Attitude and Thrust Vector Control

NASA’s Jet Propulsion Laboratory, Pasadena, California A micro-electrofluidic-spray propulsion (MEP) system was built on a micro scale, in which arrays of hundreds of nano-thrusters are etched on silicon wafers like ICs, only a centimeter on a side. Many dozens of these thruster chips can be arrayed to form a macro-thruster of finite and significant thrust. Approximately 300 centimeter-square, 100-micro-Newton micro-thrusters are arrayed in a square pyramidal structure. The pyramid is of shallow obliquity, with no more than 20° offset from the spacecraft face. This small angular offset is sufficient to provide thrust vector control (TVC) for the thruster.

Posted in: Briefs

Read More >>

Carbon Nanotube Tower-Based Supercapacitor

A new technology to create electrochemical double-layer supercapacitors is provided using carbon nanotubes as electrodes of the storage medium. This invention allows efficient transport between the capacitor electrodes through the porous nature of the nanotubes, and has a low interface resistance between the electrode material and the collector. Carbon nanotubes directly grown on a metal surface are used to improve the supercapacitor performance. The nanotubes offer a high surface area and usable porosity for a given volume and mass, both of which are highly desirable for supercapacitor operation.

Posted in: Briefs, Energy Storage

Read More >>

New Material Enables Improved Ultrasound

Ultrasound technology could soon be improved to produce high-quality, high-resolution images, thanks to the development of a new key material by a team of researchers in the Department of Biomedical Engineering at Texas A&M University, College Station.

Posted in: Imaging & Diagnostics, Optics/Photonics, Bio-Medical, Briefs, Briefs, Metals, Diagnostics, Patient Monitoring, Optics

Read More >>

Magnetic Responsive Hydrogel Material Delivery System

Magnetic nanoparticles can be used as contrasting agents in MRIs, and as a drug delivery mechanism. Interest in the design of new drug delivery systems focuses on releasing the drug at a controlled rate and desired time. Magnetic nanoparticles (MNPs) have shown great potential for use in biomedicine due to their ability to get close to biological entities such as cells, viruses, proteins, and genes with heating ability when exposed to a time-varying magnetic field. Superparamagnetic MNPs with proven biocompatibility have attracted attention as drug carriers in hyperthermia therapy, magnetic resonance imaging (MRI) as a contrasting agent, tissue repair, immunoassay, and cell separation procedures.

Posted in: Bio-Medical, Briefs, Briefs, Drug Delivery & Fluid Handling

Read More >>

Die Extrusion Technology for Medical Tubing Applications

Patent-pending process would allow 1000-plus layers from a single extruder.Although the concept of nanotechnology (controlling matter on an atomic scale) dates back to 1959, it is only now becoming more commercially realized. It has the potential to challenge the way all products are extruded in almost every type of medical tubular or related industrial product applications.

Posted in: Bio-Medical, Briefs, Briefs, Custom & Contract Manufacturing

Read More >>