Photonics

Thin Films Self-Assemble in One Minute

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have devised a technique whereby self-assembling nanoparticle arrays can form a highly ordered thin film over macroscopic distances in one minute.

Posted in: Electronics & Computers, Electronic Components, Photonics, Optics, Manufacturing & Prototyping, Materials, Coatings & Adhesives, Composites, Nanotechnology, News

Read More >>

New Rotary Sensor Keeps Conveyor Belts Running Smoothly

Rotary sensors can help determine the position of a moveable body in relation to an axis. They are essential to the smooth running of car engines in the automotive industry, for example. In factories, goods and products are transported from one processing station to the next via conveyor belt. For the transfer from one belt to the next to run smoothly, it must take place precisely at a specific position, which means knowing the relative position of objects on the conveyor belts as they move towards each other. This can be determined from the angle of rotation, which refers to the position of a moveable body to an axis.

Posted in: Electronics & Computers, Electronic Components, Photonics, Optics, Manufacturing & Prototyping, Industrial Controls & Automation, Consumer Product Manufacturing, Sensors, Test & Measurement, Measuring Instruments, News

Read More >>

Creating Better Thermal-Imaging Lens From Waste Sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team has found. The team successfully took thermal images of a person through a piece of the new plastic. By contrast, taking a picture taken through the plastic often used for ordinary lenses does not show a person’s body heat.

Posted in: Imaging, Photonics, Optics, Optical Components, Materials, Plastics, News

Read More >>

OCULLAR Provides Around-the-Clock Ocean Measurements

A team led at NASA's Goddard Space Flight Center in Greenbelt, Md., has developed an instrument capable of observing ocean color during normal sunlight conditions and under moonlight — a first-ever capability that will allow scientists to monitor the health and chemistry of the planet’s oceans literally around the clock.The prototype Ocean Color Underwater Low Light Advanced Radiometer (OCULLAR) has shown in field testing that it can measure ocean color under low-light conditions across multiple wavelength bands, from the ultraviolet to the near-infrared. In contrast, current remote-sensing instruments can obtain measurements — based on electromagnetic energy emitted by the sun, transmitted through the atmosphere, reflected off Earth’s surface, or upwelled from water masses — only during daylight hours, said Principal Investigator Stan Hooker.Of particular interest to scientists studying ocean color is phytoplankton, the microscopic ocean plants that form the base of the oceanic food web. The tiny plants use sunlight and carbon dioxide to produce organic carbon. This process, called photosynthesis, is possible because plants contain chlorophyll, green-colored compounds that trap the energy from sunlight. Because different types of phytoplankton contain different kinds of chlorophyll, measuring the color of a particular area allows scientists to estimate the amount and general type of phytoplankton there. Since phytoplankton also depend on specific conditions for growth, they frequently become the first to be affected by pollution or some other change in their environment.Until now, however, obtaining these measurements was limited to daylight hours and only during the spring, summer and fall months in the polar regions — a problem Hooker sought to correct with OCULLAR. The successful OCULLAR demonstration leads the way to anticipated commercialization and creates a new capability for oceanographers, climate scientists, and others interested in quantifying, understanding, and monitoring the biological productivity of oceans, coastal areas, and inland waters.SourceAlso: Learn about a Data Assimilation System for Coastal Ocean Prediction.

Posted in: Photonics, Environmental Monitoring, Green Design & Manufacturing, Test & Measurement, Measuring Instruments, Monitoring, News

Read More >>

Advances in Manufacturing Fiber Optic Gyroscopes

Since it was first proposed in 1975, the fiber optic gyroscope (FOG) has steadily improved in performance and manufacturability. Now a mainstream, high-volume manufactured product with performance approaching Ring Laser Gyros (RLG), FOGs offer substantial advantages over competitive technologies in terms of reliability, cost, and complexity. Optical fiber splicing and related processes are at the core of this achievement.

Posted in: Features, Photonics, Briefs

Read More >>

Beyond Smart Vision

Many Higher-End Vision Projects Require Capabilities Not Built Into Smart Vision Systems With the proliferation of smart vision (SV) cameras and platforms it is understandable that automation engineers begin to define vision technology capabilities based on the performance and features of these popular and easy to implement products. Although they are effective for addressing a broad range of common vision applications and requirements, there are compromises made to make SV products easy to use and less costly, the obvious being reduced vision processing and performance capabilities.

Posted in: Applications, Photonics, Briefs

Read More >>

Product of the Month: Non-Contact Laser Beam Monitoring System

Ophir Photonics (North Logan, UT) announced the newest version of BeamWatch™, a non-contact, focus spot size and position monitor for very high power YAG and fiber lasers used in material processing applications. Because there is no contact with the laser beam, the system has no power restriction and has been successfully tested on high power lasers up to 100kW.

Posted in: Products, Photonics, Briefs

Read More >>