Photonics

Aligning Optical Fibers by Means of Actuated MEMS Wedges

Wedges would be fabricated using gray-scale exposure of photoresist. Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields.

Posted in: Tech Briefs, ptb catchall, Photonics, Briefs

Read More >>

Flexible Laser Design Targets Low-Volume Material Processing Needs

A flexible approach to diode-pumped laser design combines customized performance with costeffective manufacturing. Q-switched, diode-pumped solid-state lasers with an end-pumped cavity design are now widely used in micromachining, materials processing, marking, and related applications. They are used to process a broad range of materials including metals, glass, plastics, and semiconductors. But this application diversity creates a concomitant need for laser diversity. Namely, while each application requires superior reliability and performance, the definition of “superior performance” is very application-specific. For example, some metal ablation applications may benefit from a long laser pulse, whereas semiconductor scribing needs a short pulse and a very high pulse repetition rate.

Posted in: Tech Briefs, ptb catchall, Photonics, Briefs

Read More >>

Instrumented Spindle Improves Manufacturing of Optical Materials

Sensors and data acquisition system provide real-time visibility of grinding system operation. High-performance materials such as ceramics, optics, and alloy steels are manufactured using abrasive grinding technology. Until now, the grinding wheel and process conditions have been difficult to measure in production.

Posted in: Tech Briefs, ptb catchall, Photonics, Briefs

Read More >>

Mini CW Lasers Enable Next-Generation Bioinstrumentation

During the past few years, low-cost, continuous-wave (CW) lasers have helped advance a wide range of life and health science applications such as cell sorting, DNA sequencing, confocal microscopy, micro array readers, hematology, and flow cytometry. The bioinstrumentation market continues to evolve, and as it matures, it continues to follow the same trends inherent to the semiconductor and telecommunications markets. Like their counterparts in those other markets, manufacturers of benchtop instruments are looking for robust, cost-effective solutions. They want smaller footprints so that they can decrease the size of their solutions. At the same time, they want to consolidate their supply chain by focusing on proven suppliers that can provide a complete spectrum of wavelengths.

Posted in: Features, ptb catchall, Photonics, Articles

Read More >>

FPGAs Yield Virtual Laser Valves for Microfluidics

In today’s “micro world,” complex electrical systems, including analog and digital components, can fit on integrated circuits smaller than a fingernail. Microfluidics, a subset of microelectro-mechanical systems (MEMS) technology, is emerging as a new technical niche within microelectronics with widespread application in the health, chemical, and food industries.

Posted in: ptb catchall, Applications, Photonics, Application Briefs

Read More >>

Compact Packaging of Photonic Millimeter-Wave Receiver

Bulky positioning mechanisms are not needed. John H. Glenn Research Center, Cleveland, Ohio A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system.

Posted in: Tech Briefs, ptb catchall, Photonics, Briefs

Read More >>

Fabrication of Submillimeter Axisymmetric Optical Components

Surfaces of components can be arbitrarily shaped to optimize spectral responses. NASA’s Jet Propulsion Laboratory, Pasadena, California It is now possible to fashion transparent crystalline materials into axisymmetric optical components having diameters ranging from hundreds down to tens of micrometers, whereas previously, the smallest attainable diameter was 500 μm. A major step in the fabrication process that makes this possible can be characterized as diamond turning or computer numerically controlled machining on an ultrahigh-precision lathe. This process affords the flexibility to make arbitrary axisymmetric shapes that have various degrees of complexity: examples include a flat disk or a torus supported by a cylinder (see figure), or multiple closely axially spaced disks or tori supported by a cylinder. Such optical components are intended mainly for use as whispering-gallery-mode optical resonators in diverse actual and potential applications, including wavelength filtering, modulation, photonic generation and detection of microwaves, and research in quantum electrodynamics and quantum optics.

Posted in: Tech Briefs, ptb catchall, Photonics, Briefs

Read More >>