Fiber Optic Connectors

Single Step Polishing After Laser Cleaving With the standardization of 4G wireless, the increase in cloud storage and computing, and the push for faster network data rates, the highest quality passive interconnect systems must be used. While the robustness and size of these interconnections, fiber types, and cable management all play major roles in the backbone, what happens at the tip of the connector also greatly affects the optical performance of the system.

Posted in: Briefs, Photonics


Intelligent Photonic Multi-Sensor Solutions

With the Internet of Things (IoT) quickly rising in front of us, it would be easy to get caught in the trap of thinking that both the trajectory and applications will be somewhat predictable. While hindsight is 20/20, the future can be a little trickier to envision. We can likely all agree that when we saw the first brick-sized wireless telephone, it wasn’t hard to tap our creative problem solving to conclude that subsequent generations were going to get smaller, cheaper and generally “better”. But few people could have envisioned the “smartphone,” let alone Apple’s first edition iPhone. Fewer still looked from that first brick to an age of sensor-driven, cloud-connected apps in the palms of our hands.

Posted in: Application Briefs, Briefs, Photonics


Shock-Sensing Apparatus

This apparatus enables easy and reliable shock detection and localization in high-speed inlets of aerospace vehicles. John H. Glenn Research Center, Cleveland, Ohio Acompact shock-sensing device, which employs an innovative light sheet generator, has been created. The device may be used either as a solo aerodynamic shock detector or in combination with a scanning mode shock sensor. This permits easy detection and tracking of unstable and traveling shocks in supersonic inlets.

Posted in: Briefs, TSP, Lasers & Laser Systems, Detectors, Sensors


High-Performance Photocatalytic Oxidation Reactor System

Airborne volatile organic chemicals are oxidized using blue LEDs, fiber optics, and visible light-activated catalysts for space and terrestrial air purification. Marshall Space Flight Center, Alabama As crewed space missions extend beyond low Earth orbit, the need to reliably recover potable water is critical. Aboard the International Space Station (ISS), the water is recycled from cabin humidity condensate, urine distillate, and hygiene wash wastes. In spacecraft cabin air environments, off-gassing from equipment, human metabolism, and human personal care products contributes to significant airborne concentrations of volatile organic compounds (VOCs). These polar and water-soluble compounds ultimately dissolve into the humidity condensate and stress the process load, logistics costs, and lifecycle requirements of the water processing systems. The aim of this effort was to develop the High Performance Photocatalytic Oxidation Reactor System (HPPORS) technology for the destruction of airborne VOCs prior to reaching the water processing systems. This innovation will reduce the logistics costs and lifecycle requirements of water processing systems, and help extend NASA missions to include long-duration space habitation and lunar and Mars colonization missions.

Posted in: Briefs, Recycling Technologies, Remediation Technologies, LEDs, Fiber Optics, Photonics


Low Er-Doped Yttrium Gallium Garnet (YGG) as Active Media for Solid-State Lasers at 1651 nm

This technology could serve applications in the bio-medical areas such as nerve stimulation and dentistry. Goddard Space Flight Center, Greenbelt, Maryland The typical approach for producing laser output at the 1651-nm wavelength is via nonlinear frequency conversion. Lasers based on nonlinear conversion are complex, and it is very difficult to provide stability over time and over a wide range of operating temperatures. The efficiency of such optical sources is also low. A much more promising approach is the use of active media that allows for the development of solid-state lasers (SSL) with spectral emission at 1651 nm. An important requirement for this active medium is the ability to support in-band pumping with a low quantum defect since this approach leads to significant improvement in efficiency of SSLs and excellent beam characteristics due to low thermal stress of the active media.

Posted in: Briefs, TSP, Lasers & Laser Systems


Dual-Cavity Rayleigh Scattering Measurement System

A method and apparatus were developed for simultaneous measurement of velocity, density, temperature, and their spatial and temporal derivatives in gas flow. Langley Research Center, Hampton, Virginia Molecular-based optical diagnostics techniques capable of obtaining simultaneous measurements of multiple fluid properties are critically important for characterizing hypersonic air-breathing engines, such as scramjet engines and scramjet-rocket combined cycle engines. Correlations between those properties lead to a more detailed understanding of complex flow behavior, and aid in the development of multiparameter turbulence models required for supersonic combustion engine flow path predictions.

Posted in: Briefs, TSP, Optics, Measuring Instruments


Miniature Laser Magnetometer

This conceptual design includes three key innovations future space science requires while minimizing size, mass, and power. Goddard Space Flight Center, Greenbelt, Maryland Space missions using magnetometers have been very successful. However, science missions now require higher levels of accuracy and stability in order to refine existing understanding and improve modeling. In most space missions that require high-accuracy vector measurement of magnetic fields, a separate scalar magnetometer must also be included in order to calibrate the vector measurements. The miniature laser magnetometer (MLM) addresses the need for a single, high-stability magnetometer instrument that provides both scalar and vector measurements for future space science needs while minimizing size, mass, and power.

Posted in: Briefs, TSP, Lasers & Laser Systems, Measuring Instruments