Compact Green Disk Laser for Therapy Systems

This diode-pumped, thin-disk laser is designed for applications in ophthamology, dematology, and endoscopy The JenLas® 5/8 W, recently introduced to the U.S. market, offers an output power of up to 8 Watts. Lasers of the JenLas D2 product line work in continuous wave mode, emitting green laser light at 532 nm. The infrared laser light is converted into green laser light by an intracavity frequency doubling crystal. The new laser is a multi-mode system.

Posted in: Briefs, MDB, Briefs, Medical, Surgical Robotics/Instruments, Lasers & Laser Systems


Light Source Enables Endoscope Miniaturization

This work will explore an illumination system's potential to miniaturize traditional endoscopes by shrinking the size of the channel used to deliver light. Physical space constraints continue to impact advanced procedures such as single-incision laparoscopic surgery, robotic-assisted surgery, and other minimally invasive surgical procedures. Additional functionality and instruments are being squeezed through the smallest incisions possible. Available space continues to tighten with the migration of larger diameter, three-dimensional, high-definition endoscopic imaging systems into minimally invasive procedures. Fortunately, a significant portion of the endoscope, the light delivery channel, can be reduced in size, thereby allowing the space to be used for other purposes, or for shrinking the endoscope itself.1

Posted in: Briefs, MDB, Briefs, Imaging, Bio-Medical, Diagnostics, Medical, Fiber Optics


Fiber Optic Oxygen Sensors — How Do They Work?

Fiber optic oxygen sensors use the fluorescence of a chemical complex in a sol-gel to measure the partial pressure of oxygen. The pulsed blue LED sends light, at ~475 nm, to an optical fiber. The optical fiber carries the light to the probe. The distal end of the probe tip consists of a thin layer of a hydrophobic sol-gel material.

Posted in: Articles, Features, ptb catchall, Photonics


Has the Ultimate Camera Interface Finally Arrived?

In the early days of machine vision, like with all new technology, there was a lot of confusion as to what constituted a video interface between camera and computer. It was known that a camera and frame grabber were needed, but because the frame grabber and camera manufacturers were from places all over, there wasn't much agreement on how the two should be connected. This led to a time of several cameras with several cables, often the same camera manufacturer may have had different cables for each family of cameras on offer. Couple that with the fact that frame grabber interfaces also had no interface standards and you ended up with a lot of cables, sitting around long after the frame grabber or the camera had served its purpose. This led to standardization, and agreement by all parties on what constitutes an acceptable number of interfaces.

Posted in: Application Briefs, Applications, ptb catchall, Photonics


Method of Bonding Optical Elements With Near-Zero Displacement

Displacement caused by epoxy shrinking as it cures is reduced less than 200 nm. The International X-ray Project seeks to build an x-ray telescope using thousands of pieces of thin and flexible glass mirror segments. Each mirror segment must be bonded into a housing in nearly perfect optical alignment without distortion. Forces greater than 0.001 Newton, or displacements greater than 0.5 μm of the glass, cause unacceptable optical distortion. All known epoxies shrink as they cure. Even the epoxies with the least amount of shrinkage (

Posted in: Briefs, TSP, ptb catchall, Tech Briefs, Photonics


Optical Phase Recovery and Locking in a PPM Laser Communication Link

Coherence augmentation in a pulsed optical communication link will enable enhanced Doppler tracking and ranging capabilities. Free-space optical communication holds great promise for future space missions requiring high data rates. For data communication in deep space, the current architecture employs pulse position modulation (PPM). In this scheme, the light is transmitted and detected as pulses within an array of time slots. While the PPM method is efficient for data transmission, the phase of the laser light is not utilized.

Posted in: Briefs, TSP, ptb catchall, Tech Briefs, Photonics


Reliable Optical Pump Architecture for Highly Coherent Lasers Used in Space Metrology Applications

This design also can be used in scientific instrumentation where repair is difficult such as in underwater deployment. The design and initial demonstration of a laser pump module (LPM) incorporating single-mode, grating-stabilized 808- nm diode lasers and a low-loss, high-port-count optical combiner are completed. The purpose of the developed LPM is to reliably pump an Nd:YAG crystal in the laser head (LH), which serves as the optical metrology source for SIM-Lite mission. Using the narrow-linewidth, single-mode laser diodes enables placement of the pump power near Nd adsorption peak, which enhances pumping efficiency. Grating stabilization allows for stable pump spectra as diode operating temperature and bias current change. The low-loss, high-port-count optical combiner enables efficient combining of tens of pumps. Overall, the module supports 5+ years of continuous operation at 2 W of pump power with reliability approaching 100 percent.

Posted in: Briefs, ptb catchall, Tech Briefs, Photonics


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.